房价模型构建实战(二)——数据清理

1.缺失值处理

    缺失值的处理手段大体可以分为:删除、填充、映射到高维(当做类别处理)。
    根据任务一,直接找到的缺失值情况是pu和pv;但是,根据特征nunique分布的分析,可以发现rentType存在"–“的情况,这也算是一种缺失值。
    此外,诸如rentType的"未知方式”;houseToward的"暂无数据"等,本质上也算是一种缺失值,但是对于这些缺失方式,我们可以把它当做是特殊的一类处理,而不需要去主动修改或填充值。

1.1如何修改

将rentType的"–“转换成"未知方式"类别;
pv/pu的缺失值用均值填充;
buildYear存在"暂无信息”,将其用众数填充。

1.2具体操作

1.转换object类型数据
这里直接采用LabelEncoder的方式编码,详细的编码方式请自行查阅相关资料学习。

2.时间字段的处理
buildYear由于存在"暂无信息",所以需要主动将其转换int类型;
tradeTime,将其分割成月和日。

3.删除无关字段
ID是唯一码,建模无用,所以直接删除;
city只有一个SH值,也直接删除;
tradeTime已经分割成月和日,删除原来字段

def preprocessingData(data):
    # 填充缺失值
    data['rentType'][data['rentType'] == '--'] = '未知方式'
    
    # 转换object类型数据
    columns = ['rentType','communityName','houseType', 'houseFloor', 'houseToward', 'houseDecoration',  'region', 'plate']
    
    for feature in columns:
        data[feature] = LabelEncoder().fit_transform(data[feature])

    # 将buildYear列转换为整型数据
    buildYearmean = pd.DataFrame(data[data['buildYear'] != '暂无信息']['buildYear'].mode())
    data.loc[data[data['buildYear'] == '暂无信息'].index, 'buildYear'] = buildYearmean.iloc[0, 0]
    data['buildYear'] = data['buildYear'].astype('int')

    # 处理pv和uv的空值
    data['pv'].fillna(data['pv'].mean(), inplace=True)
    data['uv'].fillna(data['uv'].mean(), inplace=True)
    data['pv'] = data['pv'].astype('int')
    data['uv'] = data['uv'].astype('int')

    # 分割交易时间
    def month(x):
        month = int(x.split('/')[1])
        return month
    def day(x):
        day = int(x.split('/')[2])
        return day
    data['month'] = data['tradeTime'].apply(lambda x: month(x))
    data['day'] = data['tradeTime'].apply(lambda x: day(x))
    
    # 去掉部分特征
    data.drop('city', axis=1, inplace=True)
    data.drop('tradeTime', axis=1, inplace=True)
    data.drop('ID', axis=1, inplace=True)
    return data

data_train = preprocessingData(data_train)

2.异常值处理

主要思路分析
针对area和tradeMoney两个维度处理:
针对tradeMoney,这里采用的是IsolationForest模型自动处理;
针对areahetotalFloor是主观+数据可视化的方式得到的结果。

2.1 tradeMoney

def IF_drop(train):
    IForest = IsolationForest(contamination=0.01)
    IForest.fit(train["tradeMoney"].values.reshape(-1,1))
    y_pred = IForest.predict(train["tradeMoney"].values.reshape(-1,1))
    drop_index = train.loc[y_pred==-1].index
    print(drop_index)
    train.drop(drop_index,inplace=True)
    return train

data_train = IF_drop(data_train)

人为筛选不合常理的异常值

def dropData(train):
    # 丢弃部分异常值
    train = train[train.area <= 200]
    train = train[(train.tradeMoney <=16000) & (train.tradeMoney >=700)]
    train.drop(train[(train['totalFloor'] == 0)].index, inplace=True)
    return train  
#数据集异常值处理
data_train = dropData(data_train)

处理异常值后再次查看面积和租金分布图


plt.figure(figsize=(15,5))
sns.boxplot(data_train.area)
plt.show()
plt.figure(figsize=(15,5))
sns.boxplot(data_train.tradeMoney),
plt.show()

异常处理后的面积租金图

3深度清洗

针对每一个region的数据,对area和tradeMoney两个维度进行深度清洗。 采用主观+数据可视化的方式。

data = data_train.copy()
g= sns.lmplot('area','tradeMoney',hue='rentType',col='region', col_wrap=3,data=data,sharex=False, sharey=False,palette='husl',scatter_kws={'alpha':0.3} )
plt.tight_layout()
plt.show()

未深度清理

# 深度清理
def cleanData(data):    
    data.drop(data[(data['tradeMoney']>16000)].index,inplace=True) 
    data.drop(data[(data['area']>160)].index,inplace=True)
    data.drop(data[(data['tradeMoney']<100)].index,inplace=True)
    data.drop(data[(data['totalFloor']==0)].index,inplace=True)

    # 深度清理
    data.drop(data[(data['region']=='RG00001')&(data['tradeMoney']<1000)&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['tradeMoney']>25000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>250)&(data['tradeMoney']<20000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>400)&(data['tradeMoney']>50000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>100)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00002') & (data['area']<100)&(data['tradeMoney']>60000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['area']<300)&(data['tradeMoney']>30000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003')&(data['tradeMoney']<500)&(data['area']<50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003')&(data['tradeMoney']<1500)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003')&(data['tradeMoney']<2000)&(data['area']>300)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003')&(data['tradeMoney']>5000)&(data['area']<20)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['area']>600)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004')&(data['tradeMoney']<1000)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']<200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']<2000)&(data['area']>180)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']>50000)&(data['area']<200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['area']>200)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00007') & (data['area']>100)&(data['tradeMoney']<2500)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['area']>200)&(data['tradeMoney']>25000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['area']>400)&(data['tradeMoney']<15000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010')&(data['tradeMoney']<3000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010')&(data['tradeMoney']>7000)&(data['area']<75)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010')&(data['tradeMoney']>12500)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['area']>400)&(data['tradeMoney']>20000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']<2000)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['area']>300)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009')&(data['area']>100)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00011')&(data['tradeMoney']<10000)&(data['area']>390)].index,inplace=True)
    data.drop(data[(data['region']=='RG00012') & (data['area']>120)&(data['tradeMoney']<5000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']<100)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']>400)&(data['tradeMoney']>50000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013')&(data['area']>80)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['area']>300)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014')&(data['tradeMoney']<1300)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014')&(data['tradeMoney']<8000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014')&(data['tradeMoney']<1000)&(data['area']>20)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014')&(data['tradeMoney']>25000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014')&(data['tradeMoney']<20000)&(data['area']>250)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']>30000)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']<50000)&(data['area']>600)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']>50000)&(data['area']>350)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006')&(data['tradeMoney']>4000)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006')&(data['tradeMoney']<600)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006')&(data['area']>165)].index,inplace=True)
    data.drop(data[(data['region']=='RG00012')&(data['tradeMoney']<800)&(data['area']<30)].index,inplace=True)
    data.drop(data[(data['region']=='RG00007')&(data['tradeMoney']<1100)&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004')&(data['tradeMoney']>8000)&(data['area']<80)].index,inplace=True)
    data.loc[(data['region']=='RG00002')&(data['area']>50)&(data['rentType']=='合租'),'rentType']='整租'
    data.loc[(data['region']=='RG00014')&(data['rentType']=='合租')&(data['area']>60),'rentType']='整租'
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']>15000)&(data['area']<110)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']>20000)&(data['area']>110)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']<1500)&(data['area']<50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['rentType']=='合租')&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00015') ].index,inplace=True)
    data.drop(data[(data['region']=='RG00014')&(data['tradeMoney']>13000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']<1200)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']>13000)&(data['area']<90)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005')&(data['tradeMoney']<1600)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00002')&(data['tradeMoney']>13000)&(data['area']<100)].index,inplace=True)
    data.reset_index(drop=True, inplace=True)
    
    return data

清理后

发布了8 篇原创文章 · 获赞 1 · 访问量 192

猜你喜欢

转载自blog.csdn.net/Moby97/article/details/103916352