生成对抗网络GAN介绍

GAN原理

生成对抗网络GAN由生成器和判别器两部分组成:

  • 判别器是常规的神经网络分类器,一半时间判别器接收来自训练数据中的真实图像,另一半时间收到来自生成器中的虚假图像。训练判别器使得对于真实图像,它输出的概率值接近1,而对于虚假图像则接近0
  • 生成器与判别器正好相反,通过训练,它输出判别器赋值概率接近1的图像。生成器需要产生更加真实的输出,从而欺骗判别器
  • 在GAN中要同时使用两个优化器,分别用来最小化判别器和生成器的损失

Batch Normalization

Batch Normalization是DCGAN(Deep Covolutional GAN)中常用的技术,它可以使网络训练得更快,允许更大的学习率,使更多的激活函数变得有效,并且使得参数更易初始化。BN一般用于激活函数使用之前,对每个输出节点,记第$i$个训练样本在该节点的输出为$x_i$,批次均值和批次方差分别为$$\mu_{B}=\frac{1}{m} \sum_{i=1}^{m} x_{i},\text{  }\sigma_{B}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{B}\right)^{2}$$则BN的输出为$$y_{i}=\gamma \hat{x}_{i}+\beta,\text{ where }\hat{x}_{i}=\frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+\epsilon}}$$其中$\epsilon$是一个很小的正值(例如0.001),$\gamma$和$\beta$均为可训练参数。最后用$\mu_{B}$和$\sigma_{B}^{2}$更新总体的均值和方差,总体均值和方差在检验网络和进行预测时使用:$$\mu_P=\tau \mu_{P}+(1-\tau) \mu_{B},\text{  }\sigma_{P}^{2}=\tau \sigma_{P}^{2}+(1-\tau) \sigma_{B}^{2}$$其中$\mu_{P}$和$\sigma_{P}^{2}$的初始值为0和1,$\tau$可取为0.99

DCGAN应用示例

使用的数据集为the Street View House Numbers(SVHN) dataset,目标是由虚假图像(随机噪音)生成数字图像,具体代码如下所示:

  • 数据处理
    import pickle as pkl
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.io import loadmat
    import tensorflow as tf
    ### 读取数据
    data_dir = 'data/'
    trainset = loadmat(data_dir + 'svhntrain_32x32.mat')
    testset = loadmat(data_dir + 'svhntest_32x32.mat')
    #the same scale as tanh activation function
    def scale(x, feature_range=(-1, 1)):
        # scale to (0, 1)
        x = ((x - x.min())/(255 - x.min()))    
        # scale to feature_range
        min, max = feature_range
        x = x * (max - min) + min
        return x
    ### 数据准备
    class Dataset:
        def __init__(self, train, test, val_frac=0.5, shuffle=False, scale_func=None):
            split_idx = int(len(test['y'])*(1 - val_frac))
            self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
            self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
            self.train_x, self.train_y = train['X'], train['y']
            ###(32,32,3,:) to (:,32,32,3)    
            self.train_x = np.rollaxis(self.train_x, 3)
            self.valid_x = np.rollaxis(self.valid_x, 3)
            self.test_x = np.rollaxis(self.test_x, 3)        
            if scale_func is None:
                self.scaler = scale
            else:
                self.scaler = scale_func
            self.shuffle = shuffle        
        def batches(self, batch_size):
            if self.shuffle:
                idx = np.arange(len(self.train_x))
                np.random.shuffle(idx)
                self.train_x = self.train_x[idx]
                self.train_y = self.train_y[idx]        
            n_batches = len(self.train_y)//batch_size
            for ii in range(0, len(self.train_y), batch_size):
                x = self.train_x[ii:ii+batch_size]
                y = self.train_y[ii:ii+batch_size]            
                yield self.scaler(x), y
    ### 创建数据集
    dataset = Dataset(trainset, testset)
    View Code
  • 搭建网络
    • 模型输入
      def model_inputs(real_dim, z_dim):
          inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
          inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')    
          return inputs_real, inputs_z
      View Code
    • 搭建生成器Generator
      ### Generator
      def generator(z, output_dim, reuse=False, alpha=0.2, training=True):
          with tf.variable_scope('generator', reuse=reuse):
              x1 = tf.layers.dense(z, 4*4*512) #First fully connected layer  
              x1 = tf.reshape(x1, (-1, 4, 4, 512)) #Reshape it to start the convolutional stack
              x1 = tf.layers.batch_normalization(x1, training=training)
              x1 = tf.maximum(alpha * x1, x1) #leaky relu, 4x4x512 now
              # transpose convolution > batch norm > leaky ReLU     
              x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same') #with zero padding
              x2 = tf.layers.batch_normalization(x2, training=training)
              x2 = tf.maximum(alpha * x2, x2) #8x8x256 now
              # transpose convolution > batch norm > leaky ReLU
              x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
              x3 = tf.layers.batch_normalization(x3, training=training)
              x3 = tf.maximum(alpha * x3, x3) #16x16x128 now    
              # output layer
              logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same') #32x32x3 now          
              out = tf.tanh(logits)        
              return out
      View Code
    • 搭建判别器Discriminator
      ### Discriminator
      def discriminator(x, reuse=False, training=True, alpha=0.2):
          with tf.variable_scope('discriminator', reuse=reuse):  
              x1 = tf.layers.conv2d(x, 64, 5, strides=2, padding='same') #Input layer is 32x32x3
              relu1 = tf.maximum(alpha * x1, x1) #16x16x64
              # convolution > batch norm > leaky ReLU
              x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
              bn2 = tf.layers.batch_normalization(x2, training=training)
              relu2 = tf.maximum(alpha * bn2, bn2) #8x8x128
              # convolution > batch norm > leaky ReLU
              x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')
              bn3 = tf.layers.batch_normalization(x3, training=training)
              relu3 = tf.maximum(alpha * bn3, bn3) #4x4x256
              # Flatten it
              flat = tf.reshape(relu3, (-1, 4*4*256))
              logits = tf.layers.dense(flat, 1)
              out = tf.sigmoid(logits)      
              return out, logits
      View Code
    • 搭建GAN并计算损失函数
      ### Create GAN and Compute Model Loss
      ### input_real: Images from the real dataset
      ### input_z: Z input(noise)
      ### output_dim: The number of channels in the output image
      def model_loss(input_real, input_z, output_dim, training=True, alpha=0.2, smooth=0.1):
          g_model = generator(input_z, output_dim, alpha=alpha, training=training)
          d_model_real, d_logits_real = discriminator(input_real, training=training, alpha=alpha)
          # reuse=True: reuse the variables instead of creating new ones if we build the graph again
          d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, training=training, alpha=alpha)
          # real and fake loss
          d_loss_real = tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*(1-smooth)) #label smoothing
          d_loss_real = tf.reduce_mean(d_loss_real)
          d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))
          d_loss_fake = tf.reduce_mean(d_loss_fake)
          ### discriminator and generator loss
          d_loss = d_loss_real + d_loss_fake
          g_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))
          g_loss = tf.reduce_mean(g_loss)
          return d_loss, g_loss, g_model
      View Code
    • 优化器
      ### Optimizer
      ### beta1: The exponential decay rate for the 1st moment in the optimizer
      def model_opt(d_loss, g_loss, learning_rate, beta1):
          # Get weights and bias to update
          t_vars = tf.trainable_variables()
          d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
          g_vars = [var for var in t_vars if var.name.startswith('generator')]
          # Optimize
          with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): #update population mean and variance
              d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
              g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
          return d_train_opt, g_train_opt
      View Code
    • 封装GAN
      ### Final GAN
      class GAN:
          def __init__(self, real_size, z_size, learning_rate, alpha=0.2, smooth=0.1, beta1=0.5):
              tf.reset_default_graph()      
              self.input_real, self.input_z = model_inputs(real_size, z_size)
              self.training = tf.placeholder_with_default(True, (), "train_status")        
              self.d_loss, self.g_loss, self.samples = model_loss(self.input_real, self.input_z, real_size[2], \
                                                                  training=self.training, alpha=alpha, smooth=smooth)      
              self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, beta1)
      View Code
  • 训练网络
    def train(net, dataset, epochs, batch_size, print_every=10, show_every=100):
        saver = tf.train.Saver()
        sample_z = np.random.uniform(-1, 1, size=(72, z_size)) #samples for generator to generate(for plotting)
        samples, losses = [], []
        steps = 0
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            for e in range(epochs):
                for x, y in dataset.batches(batch_size):
                    steps += 1
                    ### sample random noise for Generator
                    batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))
                    ### run optimizers
                    _, _ = sess.run([net.d_opt, net.g_opt], feed_dict={net.input_real:x, net.input_z:batch_z})
                    ### get the losses and print them out
                    if steps % print_every == 0:  
                        train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: x})
                        train_loss_g = net.g_loss.eval({net.input_z: batch_z})
                        print("Epoch {}/{}...".format(e+1, epochs), \
                              "Discriminator Loss: {:.4f}...".format(train_loss_d), \
                              "Generator Loss: {:.4f}".format(train_loss_g))                     
                        losses.append((train_loss_d, train_loss_g)) #save losses to view after training
                    ### save generated samples
                    if steps % show_every == 0:
                        # training=False: the batch normalization layers will use the population statistics rather than the batch statistics
                        gen_samples = sess.run(net.samples, feed_dict={net.input_z: sample_z, net.training: False})
                        samples.append(gen_samples)                       
            saver.save(sess, './checkpoints/generator.ckpt')
        with open('samples.pkl', 'wb') as f:
            pkl.dump(samples, f)
        return losses, samples
    
    ### Hyperparameters
    real_size = (32,32,3)
    z_size = 100
    learning_rate = 0.0002
    batch_size = 128
    epochs = 25
    alpha = 0.2
    smooth = 0.1
    beta1 = 0.5
    
    ### Create and Train the network
    net = GAN(real_size, z_size, learning_rate, alpha=alpha, smooth=smooth, beta1=beta1)
    losses, samples = train(net, dataset, epochs, batch_size)
    View Code
  • 最终结果可视化
    ### Visualize
    def view_samples(sample, nrows, ncols, figsize=(5,5)): #the number of the sample=nrows*ncols
        fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, sharey=True, sharex=True)
        for ax, img in zip(axes.flatten(), sample):
            ax.axis('off')
            img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
            ax.set_adjustable('box-forced')
            im = ax.imshow(img, aspect='equal')   
        plt.subplots_adjust(wspace=0, hspace=0)
        return fig, axes
    view_samples(samples[-1], 6, 12, figsize=(10,5))
    View Code

最终生成的图像如下图所示

GAN应用于半监督学习

使用的数据集同上,为了建立一个半监督学习的情景,这里仅使用前1000个训练数据的标签,并且将GAN的判别器由二分类变为多分类,针对此数据,共分为11类(10个真实数字和虚假图像)。代码的整体结构和上一部分相同,这里仅注释有改动的部分,针对该网络更为细节的改进参考文章Improved Techniques for Training GANs以及对应的github仓库

  • 数据处理
    import pickle as pkl
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.io import loadmat
    import tensorflow as tf
    data_dir = 'data/'
    trainset = loadmat(data_dir + 'svhntrain_32x32.mat')
    testset = loadmat(data_dir + 'svhntest_32x32.mat')
    def scale(x, feature_range=(-1, 1)):
        x = ((x - x.min())/(255 - x.min()))    
        min, max = feature_range
        x = x * (max - min) + min
        return x
    class Dataset:
        def __init__(self, train, test, val_frac=0.5, shuffle=True, scale_func=None):
            split_idx = int(len(test['y'])*(1 - val_frac))
            self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
            self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
            self.train_x, self.train_y = train['X'], train['y']
            ###################
            # For the purpose of semi-supervised learn, pretend that there are only 1000 labels
            # Use this mask to say which labels will allow to use
            self.label_mask = np.zeros_like(self.train_y)
            self.label_mask[0:1000] = 1
            ###################
            self.train_x = np.rollaxis(self.train_x, 3)
            self.valid_x = np.rollaxis(self.valid_x, 3)
            self.test_x = np.rollaxis(self.test_x, 3)
            if scale_func is None:
                self.scaler = scale
            else:
                self.scaler = scale_func
            self.train_x = self.scaler(self.train_x)
            self.valid_x = self.scaler(self.valid_x)
            self.test_x = self.scaler(self.test_x)
            self.shuffle = shuffle   
        def batches(self, batch_size, which_set="train"):
            ###################
            # Semi-supervised learn need both train data and validation(test) data   
            # Semi-supervised learn need both images and labels
            ###################
            x_name = which_set + "_x"
            y_name = which_set + "_y"
            num_examples = len(getattr(self, y_name))
            if self.shuffle:
                idx = np.arange(num_examples)
                np.random.shuffle(idx)
                setattr(self, x_name, getattr(self, x_name)[idx])
                setattr(self, y_name, getattr(self, y_name)[idx])
                if which_set == "train":
                    self.label_mask = self.label_mask[idx]
            dataset_x = getattr(self, x_name)
            dataset_y = getattr(self, y_name)
            for ii in range(0, num_examples, batch_size):
                x = dataset_x[ii:ii+batch_size]
                y = dataset_y[ii:ii+batch_size]
                if which_set == "train":
                    ###################
                    # When use the data for training, need to include the label mask
                    # Pretend don't have access to some of the labels                   
                    yield x, y, self.label_mask[ii:ii+batch_size]
                    ###################
                else:
                    yield x, y
    dataset = Dataset(trainset, testset)
    View Code
  • 搭建网络
    • 模型输入
      def model_inputs(real_dim, z_dim):
          inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
          inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
          ###################
          # Add placeholders for labels and label masks
          y = tf.placeholder(tf.int32, (None), name='y')
          label_mask = tf.placeholder(tf.int32, (None), name='label_mask')  
          ###################
          return inputs_real, inputs_z, y, label_mask
      View Code
    • 搭建生成器Generator
      ### Generator
      def generator(z, output_dim, reuse=False, alpha=0.2, training=True, size_mult=128):
          with tf.variable_scope('generator', reuse=reuse):
              x1 = tf.layers.dense(z, 4 * 4 * size_mult * 4)
              x1 = tf.reshape(x1, (-1, 4, 4, size_mult * 4))
              x1 = tf.layers.batch_normalization(x1, training=training)
              x1 = tf.maximum(alpha * x1, x1) #(:,4,4,4*size_mult)        
              x2 = tf.layers.conv2d_transpose(x1, size_mult * 2, 5, strides=2, padding='same')
              x2 = tf.layers.batch_normalization(x2, training=training)
              x2 = tf.maximum(alpha * x2, x2) #(:,8,8,2*size_mult)    
              x3 = tf.layers.conv2d_transpose(x2, size_mult, 5, strides=2, padding='same')
              x3 = tf.layers.batch_normalization(x3, training=training)
              x3 = tf.maximum(alpha * x3, x3) #(:,16,16,size_mult)     
              logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same') #(:,32,32,3)      
              out = tf.tanh(logits)      
              return out
      View Code
    • 搭建判别器Discriminator
      ### Discriminator
      ###################
      ### Add dropout layer to reduce overfitting since only 1000 labelled samples exist
      ### 10 class classification(10 digits) and set [fake logit=0]
      ###################
      def discriminator(x, reuse=False, training=True, alpha=0.2, drop_rate=0., num_classes=10, size_mult=64):
          with tf.variable_scope('discriminator', reuse=reuse):
              # Add dropout layer
              x = tf.layers.dropout(x, rate=drop_rate/2.5) #Input layer (:,32,32,3)   
              ###################
              x1 = tf.layers.conv2d(x, size_mult, 3, strides=2, padding='same')
              relu1 = tf.maximum(alpha * x1, x1)
              # Add dropout layer
              relu1 = tf.layers.dropout(relu1, rate=drop_rate) #(:,16,16,size_mult)
              ###################
              x2 = tf.layers.conv2d(relu1, size_mult, 3, strides=2, padding='same')
              bn2 = tf.layers.batch_normalization(x2, training=training)
              relu2 = tf.maximum(alpha * x2, x2) #(:,8,8,size_mult)
              ###################
              x3 = tf.layers.conv2d(relu2, size_mult, 3, strides=2, padding='same')
              bn3 = tf.layers.batch_normalization(x3, training=training)
              relu3 = tf.maximum(alpha * bn3, bn3)
              # Add dropout layer
              relu3 = tf.layers.dropout(relu3, rate=drop_rate) #(:,4,4,size_mult)
              ###################
              x4 = tf.layers.conv2d(relu3, 2 * size_mult, 3, strides=1, padding='same')
              bn4 = tf.layers.batch_normalization(x4, training=training)
              relu4 = tf.maximum(alpha * bn4, bn4) #(:,4,4,2*size_mult)
              ###################
              x5 = tf.layers.conv2d(relu4, 2 * size_mult, 3, strides=1, padding='same')
              bn5 = tf.layers.batch_normalization(x5, training=training)
              relu5 = tf.maximum(alpha * bn5, bn5) #(:,4,4,2*size_mult)
              ###################
              x6 = tf.layers.conv2d(relu5, 2 * size_mult, 3, strides=1, padding='valid')
              # This layer is used for the feature matching loss, don't use batch normalization on this layer
              # See the function model_loss for the feature matching loss
              relu6 = tf.maximum(alpha * x6, x6) #(:,2,2,2*size_mult)
              ###################
              # Flatten by global average pooling
              features = tf.reduce_mean(relu6, (1, 2)) #(:,2*size_mult)
              # Multi-classification
              class_logits = tf.layers.dense(features, num_classes) #(:,10) 
              out = tf.nn.softmax(class_logits)
              ###################
              # Split real and fake logits for classifying real and fake
              real_class_logits = class_logits
              fake_class_logits = 0.
              # Set gan_logits such that P(input is real | input) = sigmoid(gan_logits)
              # For Numerical stability, use this trick: log sum_i exp a_i = m + log sum_i exp(a_i - m), m = max_i a_i
              mx = tf.reduce_max(real_class_logits, 1, keepdims=True) #(:,1)
              stable_real_class_logits = real_class_logits - mx #minus the largest real logit for each sample, (:,10)
              gan_logits = tf.log(tf.reduce_sum(tf.exp(stable_real_class_logits), 1)) + tf.squeeze(mx) - fake_class_logits #(number of samples,)
              ###################
              return out, class_logits, gan_logits, features
      View Code
    • 搭建GAN并计算损失函数
      ### Create GAN and Compute Model Loss
      def model_loss(input_real, input_z, output_dim, y, num_classes, label_mask, g_size_mult, d_size_mult, \
                  training=True, alpha=0.2, drop_rate=0.):
          g_model = generator(input_z, output_dim, alpha=alpha, size_mult=g_size_mult, training=training)
          d_on_real = discriminator(input_real, alpha=alpha, drop_rate=drop_rate, size_mult=d_size_mult, training=training)
          d_on_fake = discriminator(g_model, reuse=True, alpha=alpha, drop_rate=drop_rate, size_mult=d_size_mult, training=training)
          out_real, class_logits_real, gan_logits_real, features_real = d_on_real    
          out_fake, class_logits_fake, gan_logits_fake, features_fake = d_on_fake
          ###################
          # Compute the loss for the discriminator
          #   1. The loss for the GAN problem, minimize the cross-entropy for the binary
          #      real-vs-fake classification problem
          #   2. The loss for the SVHN digit classification problem, where minimize the  
          #      cross-entropy(use the labels) for the multi-class softmax
          d_loss_real = tf.nn.sigmoid_cross_entropy_with_logits(logits=gan_logits_real, labels=tf.ones_like(gan_logits_real)*0.9) # label smoothing
          d_loss_real = tf.reduce_mean(d_loss_real)
          d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits=gan_logits_fake, labels=tf.zeros_like(gan_logits_fake))
          d_loss_fake = tf.reduce_mean(d_loss_fake)
          y = tf.squeeze(y) #labels
          class_cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=class_logits_real, \
                                                                           labels=tf.one_hot(y, class_logits_real.get_shape()[1], dtype=tf.float32))
          # Use label_mask to ignore the examples pretending unlabeled for the semi-supervised problem                                                                            
          class_cross_entropy = tf.squeeze(class_cross_entropy)
          label_mask = tf.squeeze(tf.to_float(label_mask))
          d_loss_class = tf.reduce_sum(label_mask * class_cross_entropy) / tf.maximum(1., tf.reduce_sum(label_mask))
          d_loss = d_loss_class + d_loss_real + d_loss_fake
          ###################
          # Compute the loss for the generator
          # Set the loss to the "feature matching" loss invented by Tim Salimans at OpenAI
          # This loss is the mean absolute difference between the real features and the fake features
          # This loss works better for semi-supervised learnings than the traditional generator loss
          real_moments = tf.reduce_mean(features_real, axis=0)
          fake_moments = tf.reduce_mean(features_fake, axis=0)
          g_loss = tf.reduce_mean(tf.abs(real_moments - fake_moments))
          ###################
          pred_class = tf.cast(tf.argmax(class_logits_real, 1), tf.int32)
          eq = tf.equal(y, pred_class)
          correct = tf.reduce_sum(tf.to_float(eq))
          masked_correct = tf.reduce_sum(label_mask * tf.to_float(eq))
          return d_loss, g_loss, correct, masked_correct, g_model
      View Code
    • 优化器
      ### Optimizer
      def model_opt(d_loss, g_loss, learning_rate, beta1):
          t_vars = tf.trainable_variables()
          d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
          g_vars = [var for var in t_vars if var.name.startswith('generator')]
          with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
              d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
              g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
          return d_train_opt, g_train_opt
      View Code
    • 封装GAN
      ### Final GAN
      class GAN:
          def __init__(self, real_size, z_size, g_size_mult=32, d_size_mult=64, num_classes=10, alpha=0.2, beta1=0.5):
              tf.reset_default_graph()
              ###################
              # The dropout rate and learning rate
              self.drop_rate = tf.placeholder_with_default(.6, (), "drop_rate")
              self.learning_rate = tf.placeholder(tf.float32, None, "learning_rate")
              ###################
              self.input_real, self.input_z, self.y, self.label_mask = model_inputs(real_size, z_size)
              self.training = tf.placeholder_with_default(True, (), "train_status")   
              loss_results = model_loss(self.input_real, self.input_z, real_size[2], self.y, num_classes, self.label_mask, \
                                        g_size_mult, d_size_mult, self.training, alpha, self.drop_rate)
              self.d_loss, self.g_loss, self.correct, self.masked_correct, self.samples = loss_results
              self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, self.learning_rate, beta1)
      View Code
  • 训练网络
    def train(net, dataset, epochs, batch_size, learning_rate):    
        saver = tf.train.Saver()
        sample_z = np.random.normal(0, 1, size=(50, z_size))
        samples, train_accuracies, test_accuracies = [], [], []
        steps = 0
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            for e in range(epochs):
                print("Epoch",e)  
                num_examples = 0
                num_correct = 0
                for x, y, label_mask in dataset.batches(batch_size):
                    steps += 1
                    num_examples += label_mask.sum()
                    batch_z = np.random.normal(0, 1, size=(batch_size, z_size))
                    _, _, correct = sess.run([net.d_opt, net.g_opt, net.masked_correct], \
                                              feed_dict={net.input_real: x, net.input_z: batch_z, net.y: y, \
                                                         net.label_mask: label_mask, net.learning_rate: learning_rate})
                    num_correct += correct
                ###################
                # At the end of the epoch:
                #   compute train accuracy(only for labeled[masked] images) 
                #   shrink learning rate
                train_accuracy = num_correct / float(num_examples)        
                print("\t\tClassifier train accuracy: ", train_accuracy)
                learning_rate *= 0.9
                ###################
                # At the end of the epoch: compute test accuracy       
                num_examples = 0
                num_correct = 0
                for x, y in dataset.batches(batch_size, which_set="test"):
                    num_examples += x.shape[0]
                    correct = sess.run(net.correct, feed_dict={net.input_real: x, net.y: y, net.drop_rate: 0., net.training: False})
                    num_correct += correct        
                test_accuracy = num_correct / float(num_examples)
                print("\t\tClassifier test accuracy", test_accuracy)  
                ###################   
                # Save history of accuracies to view after training
                train_accuracies.append(train_accuracy)
                test_accuracies.append(test_accuracy)
                ###################
                gen_samples = sess.run(net.samples, feed_dict={net.input_z: sample_z, net.training: False})
                samples.append(gen_samples)                    
            saver.save(sess, './checkpoints/generator.ckpt')
        with open('samples.pkl', 'wb') as f:
            pkl.dump(samples, f)
        return train_accuracies, test_accuracies, samples
    
    real_size = (32,32,3)
    z_size = 100
    learning_rate = 0.0003
    batch_size = 128
    epochs = 20
    net = GAN(real_size, z_size)
    train_accuracies, test_accuracies, samples = train(net, dataset, epochs, batch_size, learning_rate)
    View Code
  • 最终结果
    # Plot accuracies
    fig, ax = plt.subplots(figsize=(10,5))
    plt.plot(train_accuracies, label='Train', alpha=0.5)
    plt.plot(test_accuracies, label='Test', alpha=0.5)
    ax.set_xticks(range(epochs))
    plt.title("Accuracy(Final Test: {0}%)".format(int(round(test_accuracies[-1]*100))))
    plt.legend()
    View Code

猜你喜欢

转载自www.cnblogs.com/sunwq06/p/11189722.html