rabbitMQ ---应用场景

rabbitMQ 优点

他的好处在于可以支撑高并发、高吞吐、性能很高,同时有非常完善的后台管理界面可以使用。
除此之外,RabbitMQ的开源社区很活跃,较高频率的迭代版本,来修复发现的bug以及进行各种优化。

消息中间件 能解决什么样的问题

系统解耦

假设你有个系统A,这个系统A会产出一个核心数据,现在下游有系统B和系统C需要这个数据。
那简单,系统A就是直接调用系统B和系统C的接口发送数据给他们就好了。
在这里插入图片描述
但是现在要是来了系统D、系统E、系统F、系统G,等等,十来个其他系统慢慢的都需要这份核心数据呢?
在这里插入图片描述
大家可别以为这是开玩笑,一个大规模系统,往往会拆分为几十个甚至上百个子系统,每个子系统又对应N多个服务,这些系统与系统之间有着错综复杂的关系网络。

如果某个系统产出一份核心数据,可能下游无数的其他系统都需要这份数据来实现各种业务逻辑。

此时如果你要是采取上面那种模式来设计系统架构,那么绝对你负责系统A的同学要被烦死了。

先是来一个人找他要求发送数据给一个新的系统H,系统A的同学要修改代码然后在那个代码里加入调用新系统H的流程。

一会那个系统B是个陈旧老系统要下线了,告诉系统A的同学:别给我发送数据了,接着系统A再次修改代码不再给这个系统B。
然后如果要是某个下游系统突然宕机了呢?

系统A的调用代码里是不是会抛异常?那系统A的同学会收到报警说异常了,结果他还要去care是下游哪个系统宕机了。

所以在实际的系统架构设计中,如果全部采取这种系统耦合的方式,在某些场景下绝对是不合适的,系统耦合度太严重。

并且互相耦合起来并不是核心链路的调用,而是一些非核心的场景(比如上述的数据消费)导致了系统耦合,这样会严重的影响上下游系统的开发和维护效率。

因此在上述系统架构中,就可以采用MQ中间件来实现系统解耦。
在这里插入图片描述

系统A就把自己的一份核心数据发到MQ里,下游哪个系统感兴趣自己去消费即可,不需要了就取消数据的消费

异步调用

假设你有一个系统调用链路,是系统A调用系统B,一般耗时20ms;系统B调用系统C,一般耗时200ms;系统C调用系统D,一般耗时2s,如下图所示。

在这里插入图片描述

现在最大的问题就是:

用户一个请求过来巨慢无比,因为走完一个链路,需要耗费:

20ms + 200ms + 2000ms(2s) = 2220ms,

也就是2秒多的时间。但是实际上,链路中的系统A调用系统B,系统B调用系统C,这两个步骤起来也就220ms。

就因为引入了系统C调用系统D这个步骤,导致最终链路执行时间是2秒多,直接将链路调用性能降低了10倍,这就是导致链路执行过慢的罪魁祸首。

那此时我们可以思考一下,是不是可以将系统D从链路中抽离出去做成异步调用呢?

其实很多的业务场景是可以允许异步调用的。

举个例子:你平时点个外卖,咔嚓一下子下订单然后付款了,此时账户扣款、创建订单、通知商家给你准备菜品。

接着,是不是需要找个骑手给你送餐?那这个找骑手的过程,是需要一套复杂算法来实现调度的,比较耗时。

但是其实稍微晚个几十秒完成骑手的调度都是ok的,因为实际并不需要在你支付的一瞬间立马给你找好骑手,也没那个必要。

那么我们是不是就可以把找骑手给你送餐的这个步骤从链路中抽离出去,做成异步化的,哪怕延迟个几十秒,但是只要在一定时间范围内给你找到一个骑手去送餐就可以了。

这样是不是就可以让你下订单点外卖的速度变得超快?支付成功之后,直接创建好订单、账户扣款、通知商家立马给你准备做菜就ok了,这个过程可能就几百毫秒。

然后后台异步化的耗费可能几十秒通过调度算法给你找到一个骑手去送餐,但是这个步骤不影响我们快速下订单。

当然我们不是说那些大家熟悉的外卖平台的技术架构就一定是这么实现的,只不过是用一个生活中常见的例子给大家举例说明而已。

所以上面的链路也是同理,如果业务流程支持异步化的话,是不是就可以考虑把系统C对系统D的调用抽离出去做成异步化的,不要放在链路中同步依次调用。

这样,实现思路就是系统A -> 系统B -> 系统C,直接就耗费220ms后直接成功了。

然后系统C就是发送个消息到MQ中间件里,由系统D消费到消息之后慢慢的异步来执行这个耗时2s的业务处理。通过这种方式直接将核心链路的执行性能提升了10倍。

整个过程,如下图所示:
在这里插入图片描述
这里还有一种情况,同时有大量用户注册你的软件,再高并发情况下注册请求开始出现一些问题,例如邮件接口承受不住,或是分析信息时的大量计算使cpu满载,这将会出现虽然用户数据记录很快的添加到数据库中了,但是却卡在发邮件或分析信息时的情况,导致请求的响应时间大幅增长,甚至出现超时,这就有点不划算了。面对这种情况一般也是将这些操作放入消息队列(生产者消费者模型),消息队列慢慢的进行处理,同时可以很快的完成注册请求,不会影响用户使用其他功能。

流量削峰

假设你有一个系统,平时正常的时候每秒可能就几百个请求,系统部署在8核16G的机器的上,正常处理都是ok的,每秒几百请求是可以轻松抗住的

但是如下图所示,在高峰期一下子来了每秒钟几千请求,瞬时出现了流量高峰,此时你的选择是要搞10台机器,抗住每秒几千请求的瞬时高峰吗?

在这里插入图片描述

那如果瞬时高峰每天就那么半个小时,接着直接就降低为了每秒就几百请求,如果你线上部署了很多台机器,那么每台机器就处理每秒几十个请求就可以了,这不是有点浪费机器资源吗?

大部分时候,每秒几百请求,一台机器就足够了,但是为了抗那每天瞬时的高峰,硬是部署了10台机器,每天就那半个小时有用,别的时候都是浪费资源的。

在这里插入图片描述

但是如果你就部署一台机器,那会导致瞬时高峰时,一下子压垮你的系统,因为绝对无法抗住每秒几千的请求高峰。

此时我们就可以用MQ中间件来进行流量削峰。所有机器前面部署一层MQ,平时每秒几百请求大家都可以轻松接收消息。

一旦到了瞬时高峰期,一下涌入每秒几千的请求,就可以积压在MQ里面,然后那一台机器慢慢的处理和消费。

等高峰期过了,再消费一段时间,MQ里积压的数据就消费完毕了。

在这里插入图片描述

这个就是很典型的一个MQ的用法,用有限的机器资源承载高并发请求,如果业务场景允许异步削峰,高峰期积压一些请求在MQ里,然后高峰期过了,后台系统在一定时间内消费完毕不再积压的话,那就很适合用这种技术方案。

猜你喜欢

转载自blog.csdn.net/liguangix/article/details/88189364