机器学习---优化基础数学知识点总结

优化

几乎所有机器学习算法归根到底都是在求解最优化问题。求解最优化问题的指导思想是在极值点处函数的导数/梯度必须为0。因此你必须理解梯度下降法,牛顿法这两种常用的算法,它们的迭代公式都可以从泰勒展开公式中得到。如果能知道坐标下降法、拟牛顿法就更好了。

1.一阶导数(曲线变化的快慢,即斜率)

2.二阶导数(斜率变化的快慢。即凹凸性)

 

3.目标函数

损失函数:计算的是一个样本的误差

代价函数:是整个训练集上所有样本误差的平均

目标函数:代价函数 + 正则化项

实际应用:

损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,举例说明:

上面三个图的曲线函数依次为f1(x),f2(x),f3(x),我们想用这三个函数分别来拟合真实值Y。

我们给定x,这三个函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)

损失函数越小,就代表模型拟合的越好。那是不是我们的目标就只是让loss function越小越好呢?还不是。这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的(X,Y)遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集,f(X)关于训练集的平均损失称作经验风险(empirical risk),所以我们的目标就是最小化经验风险

到这里完了吗?还没有。

如果到这一步就完了的话,那我们看上面的图,那肯定是最右面的f3(x)的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看它肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合(over-fitting)。为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让结构风险最小化。这个时候就定义了一个函数J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有L1, L2范数。到这一步我们就可以说我们最终的优化函数是:

即最优化经验风险和结构风险,而这个函数就被称为目标函数

4.凸优化

凸优化是机器学习中经常会提及的一个概念,这是一类特殊的优化问题,它的优化变量的可行域是凸集,目标函数是凸函数。凸优化最好的性质是它的所有局部最优解就是全局最优解,因此求解时不会陷入局部最优解。如果一个问题被证明为是凸优化问题,基本上已经宣告此问题得到了解决。在机器学习中,线性回归、岭回归、支持向量机、logistic回归等很多算法求解的都是凸优化问题。

函数上方的点集就是凸集,函数上任意两点的连线,仍然在函数图像上方。

一句话说清楚就是:希望找到合适的x,使得f0(x)最小

5.全局最优化和局部最优化

全局最优化指的是在满足条件约束的情况下,找到唯一的一个点满足最大值或者最小值。

局部最优化指的是在满足条件约束的情况下,有可能找到一个局部最大/小点,但不是全局最大或者最小的点。 
用图像表示为:

6.无约束优化

首先来看无约束最优化问题: minf(x)

其中函数f:Rn→R.求解此问题的方法方法分为两大类:最优条件法和迭代法。

所谓的最优条件法,是指当函数存在解析形式,能够通过最优性条件求解出显式最优解。对于无约束最优化问题,如果f(x)在最优点x¯附近可微,那么x¯是局部极小点的必要条件为: ∇f(x¯)=0

我们常常就是通过这个必要条件去求取可能的极小值点,再验证这些点是否真的是极小值点。当上式方程可以求解的时候,无约束最优化问题基本就解决了。实际中,这个方程往往难以求解。这就引出了第二大类方法:迭代法。

迭代法,也称为“搜索”法,主要思想是通过简单的运算构造点列,逐渐逼近问题的最优解。这里说的“点”是多维空间中的点,也称为“向量”。还有少部分算法通过构造点的集合来逼近问题的最优解,如单纯形调优法。

用于求解无约束最优化问题的方法可以分为解析法和直接法两大类。解析法在构造迭代公式的过程中往往使用了泰勒展开来作近似或者推导,因此迭代步骤中含有梯度∇f(x)或黑塞(Hessian)矩阵∇2f(x),在问题的解析形态较好的情况下使用往往能获得比较快的收敛速度。而直接法则从物理角度思考如何递推,不会用到梯度或者黑塞矩阵,它对问题的解析形态几乎没有要求,只要能计算出函数值即可。当然,它的收敛速度往往难于保证。

求解无约束最优化问题的解析法主要有:最速下降法牛顿法共轭梯度法(DFP法)和变尺度法(变度量法)。对于特殊的最小二乘问题,有最小二乘法。这些方法各有千秋,除了最小二乘法,后面的方法都针对前面方法的某个问题做了改进。这些方法的核心就是研究如何确定每一步迭代的方向和步长

7. 梯度下降法

方向导数和梯度:

方向导数:偏导数求的都是沿着坐标轴的变化率,不管多少维也好,都只是求的变化率,如果想求在某个方向而不是沿着坐标轴方向的变化率怎么求呢?那方向导数,简单来说,就是我们指定任意一个方向,函数对对这个任意方向的变化率。

或者说,如下图,我们知道在一维的时候,函数的导数就是在某点对应切线的斜率,那么对于函数f(x,y) 点在这个方向上也是有切线的,其切线的斜率就是方向导数。当然,注意这个切线是任意的,这里我们要限定其方向,也就是图中中的矢量y的方向。

梯度:是一个矢量或者说是一个向量,其方向上的方向导数最大,其大小正好是此最大方向导数。

梯度怎么算?

梯度有什么用?

简单的讲,假如你在一座山上,蒙着眼睛,但是你必须到达山谷中最低点的湖泊,你该怎么办?然后我们想到一个简单的方法,在每走一步时,都是走那个离谷底最近的那个方向,那怎么求才能使得每一步都下降更大的高度,这个时候我们就完全可以用梯度来帮助我们,就可以完成任务啦!

梯度下降法

注意:这里只是假设,不用知道这个目标函数就是平方损失函数等等,然后肯定有人问既然要最小化它,那求个导数,然后使得导数等于0求出不就好了吗?Emmmm...是的,有这样的解法,可以去了解正规方程组求解。

说下这里不讲的原因,主要是那样的方式太难求解,然后在高维的时候,可能不可解,但机器学习或深度学习中,很多都是超高维的,所以也一般不用那种方法。总之,梯度下降是另一种优化的不错方式,比直接求导好很多。

梯度下降:我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候,应该是沿着梯度的反方向进行权重的更新,可以有效的找到全局的最优解。这个theta的更新过程可以描述为

表示的是步长或者说是学习率(learning rate]

怎么理解α?在直观上,还是下山,我们可以这样理解,看下图,一开始的时候我们随机站在一个点,把他看成一座山,每一步,我们都以下降最多的路线来下山,那么,在这个过程中我们到达山底(最优点)是最快的,而上面的α,它决定了我们向下山走时每一步的大小,过小的话收敛太慢,过大的话可能错过最小值)。

梯度下降另一种解释:

梯度下降法的缺点:

  (1)靠近极小值时收敛速度减慢,如下图所示;

  (2)直线搜索时可能会产生一些问题;

(3)可能会“之字形”地下降。

从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。

在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

比如对一个线性回归(Linear Logistics)模型,假设下面的h(x)是要拟合的函数,J(theta)为损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的样本个数,n是特征的个数。

1)批量梯度下降法(Batch Gradient DescentBGD

1)将J(theta)theta求偏导,得到每个theta对应的的梯度:

2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta

3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度会相当的慢。所以,这就引入了另外一种方法——随机梯度下降。

对于批量梯度下降法,样本个数mxn维向量,一次迭代需要把m个样本全部带入计算,迭代一次计算量为m*n2

2)随机梯度下降(Stochastic Gradient DescentSGD

1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta

3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

随机梯度下降每次迭代只使用一个样本,迭代一次计算量为n2,当样本个数m很大的时候,随机梯度下降迭代一次的速度要远高于批量梯度下降方法。两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。

对批量梯度下降法和随机梯度下降法的总结:

批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。

随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。

8.牛顿法

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数(x)的泰勒级数的前面几项来寻找方程(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

具体步骤:

  首先,选择一个接近函数 (x)零点的 x0,计算相应的 (x0) 和切线斜率f  ' (x0)(这里f ' 表示函数 f  的导数)。然后我们计算穿过点(x0,  f  (x0)) 并且斜率为'(x0)的直线和 轴的交点的x坐标,也就是求如下方程的解:

我们将新求得的点的 x 坐标命名为x1,通常x1会比x0更接近方程f (x) = 0的解。因此我们现在可以利用x1开始下一轮迭代。迭代公式可化简为如下所示:

  已经证明,如果f  ' 是连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f  ' (x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。

由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。牛顿法的搜索路径(二维情况)如下图所示:

关于牛顿法和梯度下降法的效率对比:

从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)

根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。

牛顿法的优缺点总结:

  优点:二阶收敛,收敛速度快;

缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂。

9.拟牛顿法

  拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。

  拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。

具体步骤:

拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型:

 这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点:

其中我们要求步长ak 满足Wolfe条件。这样的迭代与牛顿法类似,区别就在于用近似的Hesse矩阵Bk  

代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵Bk的更新。现在假设得到一个新的迭代xk+1,并得到一个新的二次模型:

我们尽可能地利用上一步的信息来选取Bk。具体地,我们要求

从而得到

这个公式被称为割线方程。常用的拟牛顿法有DFP算法和BFGS算法。

10.共轭梯度法

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:

注:绿色为梯度下降法,红色代表共轭梯度法

11.启发式算法

 启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。

还有一种特殊的优化算法被称之多目标优化算法,它主要针对同时优化多个目标(两个及两个以上)的优化问题,这方面比较经典的算法有NSGAII算法、MOEA/D算法以及人工免疫算法等。

12.泰勒展开(泰勒级数:多项式逼近)

微分学的知识点,概括而言,即对局部进行线性逼近;然后,分两方面,一元函数,用泰勒级数进行线性逼近,多元函数,用全微分进行线性逼近;牛顿法是泰勒级数线性逼近的应用,梯度下降法是全微分线性逼近的应用。

数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,f(n)(x)表示f(x)n阶导数,等号后的多项式称为函数f(x)x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

麦克劳林展开

函数的麦克劳林展开指上面泰勒公式中x00的情况,即是泰勒公式的特殊形式,若f(x)x=0n阶连续可导,则下式成立:

其中f(n)(x)表示f(x)n阶导数。

实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。

泰勒展开式的重要性体现在以下三个方面:

幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

泰勒级数可以用来近似计算函数的值。

13.拉格朗日函数

 作为一种优化算法,拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题。拉格朗日乘子背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。

  如何将一个含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题?拉格朗日乘数法从数学意义入手,通过引入拉格朗日乘子建立极值条件,对n个变量分别求偏导对应了n个方程,然后加上k个约束条件(对应k个拉格朗日乘子)一起构成包含了(n+k)变量的(n+k)个方程的方程组问题,这样就能根据求方程组的方法对其进行求解。

KKT条件是拉格朗日乘数法对带不等式约束问题的推广,它给出了带等式和不等式约束的优化问题在极值点处所必须满足的条件。在支持向量机中也有它的应用。

参考链接:http://www.cnblogs.com/guo-xiang/p/6662881.html

https://www.cnblogs.com/shixiangwan/p/7532830.html

猜你喜欢

转载自blog.csdn.net/qq_38157877/article/details/85229591