java 对线程安全支持有哪些?

  1. 同步容器。它的原理是将状态封装起来,并对每个公有方法都实行同步,使得每次只有1个线程能够访问容器的状态。

    • Vector和HashTable
    • Collections.synchronizedXXX方法

    同步容器的问题

    1. 这种方式使得对容器的访问都串行化,严重降低了并发性,如果多个线程来竞争容器的锁时,吞吐量严重降低
    2. 对容器的多个方法的复合操作,是线程不安全的,比如一个线程负责删除,另一个线程负责查询,有可能出现越界的异常
  2. 并发容器。java.util.concurrent包里面的一系列实现

    • Concurrent开头系列。以ConcurrentHashMap为例,它的实现原理为分段锁。默认情况下有16个,每个锁守护1/16的散列数据,这样保证了并发量能达到16

    分段锁缺陷在于虽然一般情况下只要一个锁,但是遇到需要扩容等类似的事情,只能去获取所有的锁

    ConcurrentHashMap一些问题

    1. 需要对整个容器中的内容进行计算的方法,比如size、isEmpty、contains等等。由于并发的存在,在计算的过程中可能已进过期了,它实际上就是个估计值,但是在并发的场景下,需要使用的场景是很少的。
      以ConcurrentHashMap的size方法为例:
    /**
        * Returns the number of key-value mappings in this map.  If the
        * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
        * <tt>Integer.MAX_VALUE</tt>.
        *
        * @return the number of key-value mappings in this map
        */
       public int size() {
           //为了能够算准数量,会算2次,如果两次算的不准,就锁住再算
           final Segment<K,V>[] segments = this.segments;
           int size;
           boolean overflow; // true if size overflows 32 bits
           long sum;         // sum of modCounts
           long last = 0L;   // previous sum
           int retries = -1; // 第一轮的计算总数不重试
           try {
               for (;;) {
                   if (retries++ == RETRIES_BEFORE_LOCK) {
                   //RETRIES_BEFORE_LOCK 默认是2
                       for (int j = 0; j < segments.length; ++j)
                           ensureSegment(j).lock(); // force creation
                   }
                   sum = 0L;
                   size = 0;
                   overflow = false;
                   for (int j = 0; j < segments.length; ++j) {
                       Segment<K,V> seg = segmentAt(segments, j);
                       if (seg != null) {
                           sum += seg.modCount;
                           int c = seg.count;
                           if (c < 0 || (size += c) < 0)
                               overflow = true;
                       }
                   }
                   //第一次计算的时候
                   if (sum == last)
                       break; //如果前后两次数数一致,就认为已经算好了
                   last = sum;
               }
           } finally {
               if (retries > RETRIES_BEFORE_LOCK) {
                   for (int j = 0; j < segments.length; ++j)
                       segmentAt(segments, j).unlock();
               }
           }
           return overflow ? Integer.MAX_VALUE : size;
       }
    
    1. 不能提供线程独占的功能
    • CopyOnWrite系列。以CopyOnWriteArrayList为例,只在每次修改的时候,进行加锁控制,修改会创建并重新发布一个新的容器副本,其它时候由于都是事实上不可变的,也就不会出现线程安全问题

    CopyOnWrite的问题

    每次修改都复制底层数组,存在开销,因此使用场景一般是迭代操作远多于修改操作

    CopyOnWriteArrayList的读写示例

    /**
       * Appends the specified element to the end of this list.
        *
       * @param e element to be appended to this list
      * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
           final ReentrantLock lock = this.lock;
          lock.lock();
         try {
            Object[] elements = getArray();
           int len = elements.length;
          Object[] newElements = Arrays.copyOf(elements, len + 1);
         newElements[len] = e;
        setArray(newElements);
       return true;
    } finally {
      lock.unlock();
    }
    }
           /**
          * {@inheritDoc}
         *
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public E get(int index) {
            return get(getArray(), index);
        }
        /**
       * Gets the array.  Non-private so as to also be accessible
       * from CopyOnWriteArraySet class.
       */
        final Object[] getArray() {
           return array;
        }
        private E get(Object[] a, int index) {
            return (E) a[index];
         }
    

java中的同步工具类

  1. 阻塞队列,BlockingQueue。它提供了put和take方法,在队列不满足各自条件时将产生阻塞

    BlockingQueue使用示例,生产者-消费者

    public static void main(String[] args) throws Exception {
           BlockingQueue queue = new ArrayBlockingQueue(1024);
           Producer producer = new Producer(queue);
           Consumer consumer = new Consumer(queue);
           new Thread(producer).start();
           new Thread(consumer).start();
       }
    }
    public class Producer implements Runnable{
       protected BlockingQueue queue = null;
    
       public Producer(BlockingQueue queue) {
           this.queue = queue;
       }
       
       public void run() {
           try {
               queue.put("1");
               Thread.sleep(1000);
               queue.put("2");
               Thread.sleep(2000);
               queue.put("3");
           } catch (InterruptedException e) {
               e.printStackTrace();
           }
       }
    }
    public class Consumer implements Runnable{
       
       protected BlockingQueue queue = null;
       
       public Consumer(BlockingQueue queue) {
           this.queue = queue;
       }
       
       public void run() {
           try {
               System.out.println(queue.take());
               System.out.println("Wait 1 sec");
               System.out.println(queue.take());
               System.out.println("Wait 2 sec");
               System.out.println(queue.take());
           } catch (InterruptedException e) {
               e.printStackTrace();
           }
       }
    }
    

    输出为

    1
    Wait 1 sec
    2
    Wait 2 sec
    3
    
  2. 闭锁

    • CountDownLatch。使多个线程等待一组事件发生,它包含一个计数器,表示需要等待的事件的数量,每发生一个事,就递减一次,当减为0时,所有事情发生,允许“通行”

    CountDownLatch示例:

    public class TestHarness{
       public long timeTasks(int nThreads,final Runnable task) throws InterruptedException {
       final CountDownLatch startGate = new CountDownLatch(1);
       final CountDownLatch endGate = new CountDownLatch(nThreads);
       for (int i=0;i<nThreads;i++){
           Thread t = new Thread(){
               public void run(){
                   try {
                       startGate.await();
                       try {
                           task.run();
                       }finally {
                           endGate.countDown();
                       }
                   } catch (InterruptedException e) {
                       e.printStackTrace();
                   }
               }
           };
           t.start();
       }
       long start = System.nanoTime();
       startGate.countDown();
       endGate.await();
       long end=System.nanoTime();
       return end-start;
       }
    }
    

    启动门使主线程能够同时释放所有的工作线程,结束门使得主线程能够等待最后一个线程执行完

    • FutureTask。Future.get的如果任务执行完成,则立即返回,否则将阻塞直到任务完结,再返回结果或者是抛出异常
  3. 信号量,Semaphore 。它管理着一组虚拟的许可,许可的数量可通过构造函数指定,在执行操作时首先获得许可,并在使用后释放许可,如果没有,那么accquire将阻塞直到有许可。

    Semaphore示例

    public class BoundedHashSet<T>{
       private final Set<T> set;
       private final Semaphore sem;
    
       public BoundedHashSet(int bound) {
           this.set = Collections.synchronizedSet(new HashSet<T>());
           this.sem = new Semaphore(bound);
       }
       public boolean add(T o) throws InterruptedException {
           sem.acquire();
           boolean wasAdded = false;
           try {
               wasAdded = set.add(o);
              return wasAdded;
           }finally {
               if (!wasAdded){
                   sem.release();
               }
           }
       }
       public boolean remove(Object o){
           boolean wasRemoved = set.remove(o);
           if(wasRemoved){
              sem.release();
           }
           return wasRemoved;
               
       }
    }
    
  4. 栅栏。它能阻塞一组线程直到某个事件发生。
    与闭锁的区别:

    • 所有线程必须同时到达栅栏位置,才能继续执行。闭锁用于等待事件,而栅栏用于等待其它线程。
    • 闭锁一旦进入终止状态,就不能被重置,它是一次性对象,而栅栏可以重置
    • CyclicBarrier。可以使一定数量的参与方反复地在栅栏位置汇集

    CyclicBarrier使用示例

    public static void main(String[] args) {
    //第k步执行完才能执行第k+1步
           CyclicBarrier barrier = new CyclicBarrier(3,new StageKPlusOne());
           StageK[] stageKs = new StageK[3];
           for (int i=0;i<3;i++){
               stageKs[i] = new StageK(barrier,"k part "+(i+1));
           }
           for (int i=0;i<3;i++){
               new Thread(stageKs[i]).start();
           }
    }    
    class StageKPlusOne implements Runnable{
       @Override
       public void run() {
           System.out.println("stage k over");
           System.out.println("stage k+1 start counting");
       }
    }
    class StageK implements Runnable{
       private CyclicBarrier barrier;
       private String stage;
       
       public StageK(CyclicBarrier barrier, String stage) {
           this.barrier = barrier;
           this.stage = stage;
       }
       
       @Override
       public void run() {
           System.out.println("stage "+stage+" counting...");
           try {
               TimeUnit.MILLISECONDS.sleep(500);
           } catch (InterruptedException e) {
               e.printStackTrace();
           }
           System.out.println("stage "+stage+" count over");
           try {
               barrier.await();
           } catch (InterruptedException e) {
               e.printStackTrace();
           } catch (BrokenBarrierException e) {
               e.printStackTrace();
           }
       }
    }
    

    输出为

    stage k part 1 counting...
    stage k part 3 counting...
    stage k part 2 counting...
    stage k part 2 count over
    stage k part 3 count over
    stage k part 1 count over
    stage k over
    stage k+1 start counting
    
    • Exchanger。它是一种两方栅栏,各方在栅栏位置交换数据
      Exchanger 使用示例:
    public static void main(String[] args) {
           Exchanger exchanger = new Exchanger();
            ExchangerRunnable er1 = new ExchangerRunnable(exchanger,"1");
            ExchangerRunnable er2 = new ExchangerRunnable(exchanger,"2");
            new Thread(er1).start();
            new Thread(er2).start();
        
        }
        class ExchangerRunnable implements Runnable{
        
        private Exchanger e;
        private Object o;
    
        public ExchangerRunnable(Exchanger e, Object o) {
           this.e = e;
            this.o = o;
    }
       
        @Override
        public void run() {
           Object pre=o;
            try {
                o=e.exchange(o);
                System.out.println("pre:"+pre+" now:"+o);
            } catch (InterruptedException e1) {
                e1.printStackTrace();
            }
        }
    }
    

    输出如下

    pre:1 now:2
    pre:2 now:1
    

附录

案例

猜你喜欢

转载自blog.csdn.net/weixin_39687783/article/details/84491288