拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明

摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 

和 https://en.wikipedia.org/wiki/Laplacian_matrix

定义

给定一个由n个顶点的简单图G,它的拉普拉斯矩阵L_{{n\times n}}定义为:

L = D - A,其中,D是该图G度的矩阵,A为图G的邻接矩阵。

因为G是一个简单图,A只包含0,1,并且它的对角元素均为0.

L中的元素给定为:

其中deg(vi) 表示顶点 i 的度。

对称归一化的拉普拉斯 (Symmetric normalized Laplacian)

对称归一化的拉普拉斯矩阵定义为:

L^{{{\text{sym}}}}:=D^{{-1/2}}LD^{{-1/2}}=I-D^{{-1/2}}AD^{{-1/2}},

L^{{{\text{sym}}}} 的元素给定为:

随机游走归一化的拉普拉斯 (Random walk normalized Laplacian)

随机游走归一化的拉普拉斯矩阵定义为:

L^{{{\text{rw}}}}:=D^{{-1}}L=I-D^{{-1}}A

L^{{{\text{rw}}}} 的元素给定为

泛化的拉普拉斯 (Generalized Laplacian)

泛化的拉普拉斯Q定义为:

注意:普通的拉普拉斯矩阵为泛化的拉普拉斯矩阵。

例子

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
6n-graf.svg \left(\begin{array}{rrrrrr}
 2 &  0 &  0 &  0 &  0 &  0\\
 0 &  3 &  0 &  0 &  0 &  0\\
 0 &  0 &  2 &  0 &  0 &  0\\
 0 &  0 &  0 &  3 &  0 &  0\\
 0 &  0 &  0 &  0 &  3 &  0\\
 0 &  0 &  0 &  0 &  0 &  1\\
\end{array}\right) \left(\begin{array}{rrrrrr}
 0 &  1 &  0 &  0 &  1 &  0\\
 1 &  0 &  1 &  0 &  1 &  0\\
 0 &  1 &  0 &  1 &  0 &  0\\
 0 &  0 &  1 &  0 &  1 &  1\\
 1 &  1 &  0 &  1 &  0 &  0\\
 0 &  0 &  0 &  1 &  0 &  0\\
\end{array}\right) \left(\begin{array}{rrrrrr}
 2 & -1 &  0 &  0 & -1 &  0\\
-1 &  3 & -1 &  0 & -1 &  0\\
 0 & -1 &  2 & -1 &  0 &  0\\
 0 &  0 & -1 &  3 & -1 & -1\\
-1 & -1 &  0 & -1 &  3 &  0\\
 0 &  0 &  0 & -1 &  0 &  1\\
\end{array}\right)

拉普拉斯矩阵半正定性证明

猜你喜欢

转载自www.cnblogs.com/shiyublog/p/9785342.html