java Singleton

转载自:https://www.cnblogs.com/cielosun/p/6582333.html

一. 什么是单例模式

因程序需要,有时我们只需要某个类同时保留一个对象,不希望有更多对象,此时,我们则应考虑单例模式的设计。

二. 单例模式的特点

  1. 单例模式只能有一个实例。

  2. 单例类必须创建自己的唯一实例。

  3. 单例类必须向其他对象提供这一实例。

三. 单例模式的实现

  • 懒汉模式
public class SingletonDemo {
    private static SingletonDemo instance;
    private SingletonDemo(){

    }
    public static SingletonDemo getInstance(){
        if(instance==null){
            instance=new SingletonDemo();
        }
        return instance;
    }
}

如上,通过提供一个静态的对象instance,利用private权限的构造方法和getInstance()方法来给予访问者一个单例。

缺点是,没有考虑到线程安全,可能存在多个访问者同时访问,并同时构造了多个对象的问题。之所以叫做懒汉模式,主要是因为此种方法可以非常明显的lazy loading。

针对懒汉模式线程不安全的问题,我们自然想到了,在getInstance()方法前加锁,于是就有了第二种实现。

  • 线程安全的懒汉模式
public class SingletonDemo {
    private static SingletonDemo instance;
    private SingletonDemo(){

    }
    public static synchronized SingletonDemo getInstance(){
        if(instance==null){
            instance=new SingletonDemo();
        }
        return instance;
    }
}

然而并发其实是一种特殊情况,大多时候这个锁占用的额外资源都浪费了,这种打补丁方式写出来的结构效率很低。

  • 饿汉模式
public class SingletonDemo {
    private static SingletonDemo instance=new SingletonDemo();
    private SingletonDemo(){

    }
    public static SingletonDemo getInstance(){
        return instance;
    }
}

直接在运行这个类的时候进行一次loading,之后直接访问。显然,这种方法没有起到lazy loading的效果,考虑到前面提到的和静态类的对比,这种方法只比静态类多了一个内存常驻而已。

  • 静态类内部加载
public class SingletonDemo {
    private static class SingletonHolder{
        private static SingletonDemo instance=new SingletonDemo();
    }
    private SingletonDemo(){
        System.out.println("Singleton has loaded");
    }
    public static SingletonDemo getInstance(){
        return SingletonHolder.instance;
    }
}

使用内部类的好处是,静态内部类不会在单例加载时就加载,而是在调用getInstance()方法时才进行加载,达到了类似懒汉模式的效果,而这种方法又是线程安全的。

  • 枚举方法
enum SingletonDemo{
    INSTANCE;
    public void otherMethods(){
        System.out.println("Something");
    }
}

Effective Java作者Josh Bloch 提倡的方式,在我看来简直是来自神的写法。解决了以下三个问题:

(1)自由序列化。

(2)保证只有一个实例。

(3)线程安全。

如果我们想调用它的方法时,仅需要以下操作:

public class Hello {
    public static void main(String[] args){
        SingletonDemo.INSTANCE.otherMethods();
    }
}

这种充满美感的代码真的已经终结了其他一切实现方法了。

  1. 双重校验锁法
public class SingletonDemo {
    private volatile static SingletonDemo instance;
    private SingletonDemo(){
        System.out.println("Singleton has loaded");
    }
    public static SingletonDemo getInstance(){
        if(instance==null){
            synchronized (SingletonDemo.class){
                if(instance==null){
                    instance=new SingletonDemo();
                }
            }
        }
        return instance;
    }
}

接下来我解释一下在并发时,双重校验锁法会有怎样的情景:

STEP 1. 线程A访问getInstance()方法,因为单例还没有实例化,所以进入了锁定块。

STEP 2. 线程B访问getInstance()方法,因为单例还没有实例化,得以访问接下来代码块,而接下来代码块已经被线程1锁定。

STEP 3. 线程A进入下一判断,因为单例还没有实例化,所以进行单例实例化,成功实例化后退出代码块,解除锁定。

STEP 4. 线程B进入接下来代码块,锁定线程,进入下一判断,因为已经实例化,退出代码块,解除锁定。

STEP 5. 线程A初始化并获取到了单例实例并返回,线程B获取了在线程A中初始化的单例。

理论上双重校验锁法是线程安全的,并且,这种方法实现了lazyloading。

猜你喜欢

转载自blog.csdn.net/tkzc_csk/article/details/82869583