【机器学习】【支持向量机】Python使用Sklearn实战支持向量机模型与决策边界可视化

 API文档:sklearn.svm.SVC-scikit-learn中文社区

import numpy as np
import os
# %matplotlib inline
import matplotlib
import matplotlib.pyplot as plt

plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings

warnings.filterwarnings('ignore')

'''导入库与数据集(鸢尾花数据集)'''
from sklearn.svm import SVC
from sklearn import datasets

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  ##选择全部样本 仅选择两个特征是便于展示。
y = iris["target"]
###为了演示方便,将三分类问题转化为二分类问题便于决策边界的展示
setosa_or_versicolor = (y == 0) | (y == 1)  ##获得y为1与0值的索引值
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

svm_clf = SVC(kernel="linear", C=1e12)
##