图像语义分割代码实现(1)

谷歌最新语义图像分割模型 DeepLab-v3+ 现已开源 https://www.oschina.net/news/94257/google-open-sources-pixel-2-portrait-code

https://blog.csdn.net/zizi7/article/details/77163969

针对《图像语义分割(1)- FCN》介绍的FCN算法,以官方的代码为基础,在 SIFT-Flow 数据集上做训练和测试。

介绍了如何制作自己的训练数据


数据准备

参考文章《FCN网络的训练——以SIFT-Flow 数据集为例》

1) 首先 clone 官方工程

git clone https://github.com/shelhamer/fcn.berkeleyvision.org.git
  • 1

工程是基于 CAFFE 的,所以也需要提前安装好

2)下载数据集及模型 
- 到这里下载 SIFT-Flow 数据集,解压缩到 fcn/data/sift-flow/ 下 
- 到这里下载 VGG-16 预训练模型,移动到 fcn/ilsvrc-nets/ 下 
- 参考文章《 FCN模型训练中遇到的困难》,到这里下载 VGG_ILSVRC_16_layers_deploy.prototxt 
 或者直接 copy 以下内容:

name: "VGG_ILSVRC_16_layers"
input: "data"
input_dim: 10 input_dim: 3 input_dim: 224 input_dim: 224 layers { bottom: "data" top: "conv1_1" name: "conv1_1" type: CONVOLUTION convolution_param { num_output: 64 pad: 1 kernel_size: 3 } } layers { bottom: "conv1_1" top: "conv1_1" name: "relu1_1" type: RELU } layers { bottom: "conv1_1" top: "conv1_2" name: "conv1_2" type: CONVOLUTION convolution_param { num_output: 64 pad: 1 kernel_size: 3 } } layers { bottom: "conv1_2" top: "conv1_2" name: "relu1_2" type: RELU } layers { bottom: "conv1_2" top: "pool1" name: "pool1" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool1" top: "conv2_1" name: "conv2_1" type: CONVOLUTION convolution_param { num_output: 128 pad: 1 kernel_size: 3 } } layers { bottom: "conv2_1" top: "conv2_1" name: "relu2_1" type: RELU } layers { bottom: "conv2_1" top: "conv2_2" name: "conv2_2" type: CONVOLUTION convolution_param { num_output: 128 pad: 1 kernel_size: 3 } } layers { bottom: "conv2_2" top: "conv2_2" name: "relu2_2" type: RELU } layers { bottom: "conv2_2" top: "pool2" name: "pool2" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool2" top: "conv3_1" name: "conv3_1" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_1" top: "conv3_1" name: "relu3_1" type: RELU } layers { bottom: "conv3_1" top: "conv3_2" name: "conv3_2" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_2" top: "conv3_2" name: "relu3_2" type: RELU } layers { bottom: "conv3_2" top: "conv3_3" name: "conv3_3" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_3" top: "conv3_3" name: "relu3_3" type: RELU } layers { bottom: "conv3_3" top: "pool3" name: "pool3" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool3" top: "conv4_1" name: "conv4_1" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_1" top: "conv4_1" name: "relu4_1" type: RELU } layers { bottom: "conv4_1" top: "conv4_2" name: "conv4_2" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_2" top: "conv4_2" name: "relu4_2" type: RELU } layers { bottom: "conv4_2" top: "conv4_3" name: "conv4_3" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_3" top: "conv4_3" name: "relu4_3" type: RELU } layers { bottom: "conv4_3" top: "pool4" name: "pool4" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool4" top: "conv5_1" name: "conv5_1" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_1" top: "conv5_1" name: "relu5_1" type: RELU } layers { bottom: "conv5_1" top: "conv5_2" name: "conv5_2" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_2" top: "conv5_2" name: "relu5_2" type: RELU } layers { bottom: "conv5_2" top: "conv5_3" name: "conv5_3" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_3" top: "conv5_3" name: "relu5_3" type: RELU } layers { bottom: "conv5_3" top: "pool5" name: "pool5" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool5" top: "fc6" name: "fc6" type: INNER_PRODUCT inner_product_param { num_output: 4096 } } layers { bottom: "fc6" top: "fc6" name: "relu6" type: RELU } layers { bottom: "fc6" top: "fc6" name: "drop6" type: DROPOUT dropout_param { dropout_ratio: 0.5 } } layers { bottom: "fc6" top: "fc7" name: "fc7" type: INNER_PRODUCT inner_product_param { num_output: 4096 } } layers { bottom: "fc7" top: "fc7" name: "relu7" type: RELU } layers { bottom: "fc7" top: "fc7" name: "drop7" type: DROPOUT dropout_param { dropout_ratio: 0.5 } } layers { bottom: "fc7" top: "fc8" name: "fc8" type: INNER_PRODUCT inner_product_param { num_output: 1000 } } layers { bottom: "fc8" top: "prob" name: "prob" type: SOFTMAX }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345

训练脚本修改

1)生成 test、trainval、deploy

a. 执行 fcn/siftflow-fcn32s/net.py 生成 test.prototxt 和 trainval.prototxt 
b. cp test.prototxt 为 deploy.protxt

将第一个 data 层换成

layer {
  name: "input"
  type: "Input"
  top: "data"
  input_param {
    # These dimensions are purely for sake of example;
    # see infer.py for how to reshape the net to the given input size. shape { dim: 1 dim: 3 dim: 256 dim: 256 } } }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

删除网络后面包含 loss 的层(一共2个)

2)修改 fcn/siftflow-fcn32s/solve.py

import caffe
import surgery, score

import numpy as np
import os import sys try: import setproctitle setproctitle.setproctitle(os.path.basename(os.getcwd())) except: pass vgg_weights = '../ilsvrc-nets/vgg16-fcn.caffemodel' vgg_proto = '../ilsvrc-nets/VGG_ILSVRC_16_layers_deploy.prototxt' # init caffe.set_device(0) caffe.set_mode_gpu() solver = caffe.SGDSolver('solver.prototxt') #solver.net.copy_from(weights) vgg_net = caffe.Net(vgg_proto, vgg_weights, caffe.TRAIN) surgery.transplant(solver.net, vgg_net) del vgg_net # surgeries interp_layers = [k for k in solver.net.params.keys() if 'up' in k] surgery.interp(solver.net, interp_layers) # scoring test = np.loadtxt('../data/sift-flow/test.txt', dtype=str) for _ in range(50): solver.step(2000) # N.B. metrics on the semantic labels are off b.c. of missing classes; # score manually from the histogram instead for proper evaluation score.seg_tests(solver, False, test, layer='score_sem', gt='sem') score.seg_tests(solver, False, test, layer='score_geo', gt='geo')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

3)修改 fcn/siftflow-fcn32s/solve.prototxt 
添加快照设置:

snapshot:4000
snapshot_prefix:"snapshot/train"
  • 1
  • 2

训练及测试

1) 复制 fcn/ 下的 infer.py、score.py、siftflow_layers.py、surgery.py 到 fcn/siftflow-fcn32s 下

2)python train.py 开始训练

3)修改 infer.py 的模型路径及测试图片路径

          这里写图片描述 
                       图1. 迭代72000次的分割结果

4)之后可以以 fcn32s 的训练结果为基础,训练 fcn16s 和 fcn8s 
 需要注意的是,对于 fcn16s 和 fcn8s,由于不需要重新构造网络层,因此 solve.py 不需要改

import caffe
import surgery, score

import numpy as np
import os import sys try: import setproctitle setproctitle.setproctitle(os.path.basename(os.getcwd())) except: pass weights = '../siftflow-fcn32s/snapshot/train_iter_100000.caffemodel' # init caffe.set_device(0) caffe.set_mode_gpu() solver = caffe.SGDSolver('solver.prototxt') solver.net.copy_from(weights) # surgeries interp_layers = [k for k in solver.net.params.keys() if 'up' in k] surgery.interp(solver.net, interp_layers) # scoring test = np.loadtxt('../data/sift-flow/test.txt', dtype=str) for _ in range(50): solver.step(2000) # N.B. metrics on the semantic labels are off b.c. of missing classes; # score manually from the histogram instead for proper evaluation score.seg_tests(solver, False, test, layer='score_sem', gt='sem') score.seg_tests(solver, False, test, layer='score_geo', gt='geo')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

如何制作自己的训练数据

相比 detect(使用LabelImg框选目标),segment的数据需要耗费很大精力去准备

参考这篇帖子,MIT提供了一个在线标注多边形的工具LabelMe,但一般在工程上,为了尽量精确,更多还是使用 photoshop 的“快速选择”工具

1)首先用 ps 打开待标记图像,“图像->模式->灰度”,将图像转为灰度图 
2)使用“快速选择”工具,选出目标区域,“右键->填充->颜色”,假设该区域的 label 为 9 ,那么设置 RGB 为 (9,9,9)

           这里写图片描述 
                           图2. 选择区域并填充

3)所有类别填充完成后,“文件->存储为”label 图像

注意:以上方法针对 SegNet 里的 CamVid 数据格式(图3)

                       这里写图片描述
                         图3. CamVid 数据格式

如图3所示,train和test里为RGB图像,trainannot和testannot里为标记过的label图像(灰度) 
      一组训练(图3右)数据包含两张图像

猜你喜欢

转载自www.cnblogs.com/jukan/p/9217419.html