图1
开始之前先介绍三个比较重要的结构体: basicRfRxInfo_t、basicRfTxState_t和 basicRfPktHdr_t
//接收帧信息
typedef struct {
uint8 seqNumber; //帧序号;
uint16 srcAddr; //源地址;
uint16 srcPanId; //源节点的PANID;
int8 length; //帧长度;
uint8* pPayload; //该指针指向帧数据即:净载荷数据;
uint8 ackRequest; //帧控制域的应答位信息;
int8 rssi; //接收信号强度指示;
volatile uint8 isReady; //通过CRC校验,数据接收完成,该标志位进行后续读取操作;
uint8 status; //待定????
} basicRfRxInfo_t;
//发送状态信息
typedef struct {
uint8 txSeqNumber; //帧序号;
volatile uint8 ackReceived; //ACK是否接收完成;
uint8 receiveOn; //是否处于接收状态;
uint32 frameCounter; //发送帧计数;
} basicRfTxState_t;
//BasicRf 帧头(IEEE 802.15.4)
typedef struct {
uint8 packetLength; //帧长度;
uint8 fcf0; // Frame control field LSB
uint8 fcf1; // Frame control field MSB
uint8 seqNumber; //帧序号;
uint16 panId; //PANID;
uint16 destAddr; //目的地址;
uint16 srcAddr; //源地址;
#ifdef SECURITY_CCM //安全选项;
uint8 securityControl;
uint8 frameCounter[4];
#endif
} basicRfPktHdr_t;
(一) 关于basicRfInit()
/***********************************************************************************
* @fn basicRfInit
*
* @brief Initialise basic RF datastructures. Sets channel, short address and
* PAN id in the chip and configures interrupt on packet reception
* 初始化BasicRF数据结构,如:通道选择、短地址、PANID及接收中断的配置;
* @param pRfConfig - pointer to BASIC_RF_CONFIG struct.
* This struct must be allocated by higher layer
* txState - file scope variable that keeps tx state info //发送状态信息;
* rxi - file scope variable info extracted from the last incoming
* frame //最新的所接收帧信息;
*
* @return none
*/
uint8 basicRfInit(basicRfCfg_t* pRfConfig)
{
if (halRfInit()==FAILED) //Rf初始化,启用Rf的推荐简单配置,可选的PA模块配置,始终返回Success;
return FAILED;
halIntOff(); //关闭总中断;
// Set the protocol configuration
pConfig = pRfConfig; //指向相关配置信息;
rxi.pPayload = NULL; //清空本节点的接收载荷数据;
txState.receiveOn = TRUE; //halRfInit()中开启接收;
txState.frameCounter = 0; //发送帧计数值;
txState.txSeqNumber = 0x88; //自行修改第一个发送帧序号初始值;
// Set channel
halRfSetChannel(pConfig->channel); //将定义的通道号写入相关寄存器;
// Write the short address and the PAN ID to the CC2520 RAM
halRfSetShortAddr(pConfig->myAddr); //将定义的本节点地址写入相关寄存器;
//#define SHORT_ADDR0 XREG( 0x6174 )
//#define SHORT_ADDR1 XREG( 0x6175 )
halRfSetPanId(pConfig->panId); //将定义的PANID写入相关寄存器;
//#define PAN_ID0 XREG( 0x6172 )
//#define PAN_ID1 XREG( 0x6173 )
// if security is enabled, write key and nonce
#ifdef SECURITY_CCM
basicRfSecurityInit(pConfig);
#endif
// Set up receive interrupt (received data or acknowlegment)
halRfRxInterruptConfig(basicRfRxFrmDoneIsr); //对函数指针进行赋值,关联相应的中断函数,即:声明中断程序;
halIntOn(); //开启总中断;
//为什么要开闭总中断一次????先启用发送节点后启用接收节点时,意外的接收中断?
return SUCCESS;
}
basicRfInit()如上代码所示,该函数仅对RF做简单初始化、通道选择、PANID、本节点地址进行配置,最后为RF接收中断 声明一个函数指针basicRfRxFrmDoneIsr;
/***********************************************************************************
* @fn halRfRxInterruptConfig
*
* @brief Configure RX interrupt.
* //配置接收中断,将RX中断 指向 一段可执行程序;
* @param none
*
* @return none
*/
void halRfRxInterruptConfig(ISR_FUNC_PTR pf)
{
uint8 x;
HAL_INT_LOCK(x); //保存EA并将其清零;
pfISR= pf; //将函数指针赋值,而 pfISR将在RX中断时被执行;
HAL_INT_UNLOCK(x); //恢复之前EA的值;
}
/************************************************************************************
* @fn rfIsr
*
* @brief Interrupt service routine that handles RFPKTDONE interrupt.
* //RX中断服务程序;
* @param none
*
* @return none
*/
HAL_ISR_FUNCTION( rfIsr, RF_VECTOR )
{
uint8 x;
HAL_INT_LOCK(x);
if( RFIRQF0 & IRQ_RXPKTDONE )
{
if(pfISR){
(*pfISR)(); // Execute the custom ISR
//如果pfISR不为空则将调用 函数指针所指向的函数basicRfRxFrmDoneIsr();
}
S1CON= 0; // Clear general RF interrupt flag
RFIRQF0&= ~IRQ_RXPKTDONE; // Clear RXPKTDONE interrupt
}
HAL_INT_UNLOCK(x);
}
RF中断采用了宏声明的方式(协议栈中多采用宏来声明中断,而非常规C语言函数),其声明语句如下:
#define HAL_ISR_FUNC_DECLARATION(f,v) _PRAGMA(vector=v) __near_func __interrupt void f(void) //中断函数声明的宏;
#define HAL_ISR_FUNC_PROTOTYPE(f,v) _PRAGMA(vector=v) __near_func __interrupt void f(void) //中断函数原型的宏;
#define HAL_ISR_FUNCTION(f,v) HAL_ISR_FUNC_PROTOTYPE(f,v); HAL_ISR_FUNC_DECLARATION(f,v) //中断函数定义宏,包括
//原型和声明;
其中rfIsr对应于宏中的 f(void),类似于指向其自身HAL_ISR_FUNCTION()。
(二)关于basicRfSendPacket()
/***********************************************************************************
* @fn basicRfSendPacket
*
* @brief Send packet
*
* @param destAddr - destination short address //目的地址;
* pPayload - pointer to payload buffer. This buffer must be
* allocated by higher layer. //需要MAC层以上产生要发送的数据(指针或数组);
* length - length of payload //要发送数据的长度;
* txState - file scope variable that keeps tx state info //发送状态信息;
* mpdu - file scope variable. Buffer for the frame to send //对数据进行封包为物理层协议数据单元;
*
* @return basicRFStatus_t - SUCCESS or FAILED
*/
uint8 basicRfSendPacket(uint16 destAddr, uint8* pPayload, uint8 length)
{
uint8 mpduLength;
uint8 status;
// Turn on receiver if its not on
//保证设备处于接收状态,其初始值在halRfInit()中开启接收并在basicRfInit()中被赋值为TRUE;
if(!txState.receiveOn) {
halRfReceiveOn();
}
// Check packet length
//取最小的有效数据长度,类似与可变长度域,可变长度值是很有用的例如:串口透传的数据长度;
//最大数据载荷为
//#define BASIC_RF_MAX_PAYLOAD_SIZE (127 - BASIC_RF_PACKET_OVERHEAD_SIZE - BASIC_RF_AUX_HDR_LENGTH - BASIC_RF_LEN_MIC)
//后面两项为安全选项的附加信息,可根据需要自行调整;
length = min(length, BASIC_RF_MAX_PAYLOAD_SIZE);
// Wait until the transceiver is idle
//根据SFD和TX_Active 状态位来判定设备是否处于空闲状态;
//SFD状态位为0说明设备目前无发送无接收;
halRfWaitTransceiverReady();
// Turn off RX frame done interrupt to avoid interference on the SPI interface
//防止2591冲突???
halRfDisableRxInterrupt();
mpduLength = basicRfBuildMpdu(destAddr, pPayload, length); //根据目的地址、载荷数据及长度信息进行封包;
#ifdef SECURITY_CCM
halRfWriteTxBufSecure(txMpdu, mpduLength, length, BASIC_RF_LEN_AUTH, BASIC_RF_SECURITY_M);
txState.frameCounter++; // Increment frame counter field
#else
halRfWriteTxBuf(txMpdu, mpduLength); //使用ISFLUSHTX()清空TXFIFO 并清除IRQ_TXDONE中断溢出标志位,将MPDU一个字节一个字节的写入RFD;
#endif
// Turn on RX frame done interrupt for ACK reception
//仅仅是始能接收中断,为发送完成后自动进入接收模式 接收 ACK做准备性工作;
//仅作为发送节点且不启用ACK的话,这部分语句都可以省略去;
halRfEnableRxInterrupt();
// Send frame with CCA. return FAILED if not successful
//仅仅进行数据发送并没有进行CCA(比较坑爹的注释,事实是自己也没怎么仔细看- -!);
//若发送前进行CCA,需要ISSAMPLECCA 再进行ISTXONCCA 判断CCA标志位的值进行后续操作;
if(halRfTransmit() != SUCCESS) {
status = FAILED;
}
// Wait for the acknowledge to be received, if any
//如果启用ACK,则在发送完成后进行进行等待580μs
//实际测试中发送7个字节的数据,两个节点先后发送A和B两个数据帧,两个数据帧的间隔大概需要不小于440μs+580μs+330μs (粗略估计^_^)的时间间隔Sniffer才能捕捉到A的应答帧(这些多出的时间 由节点程序准备和结束时间?)可以确定的是接受节点接收先后两个数据帧的时间间隔要大于580μs,时间间隔太短不能正确接收后一个数据帧,可以通过启用CCA解决这个冲突;
if (pConfig->ackRequest) {
txState.ackReceived = FALSE;
// We'll enter RX automatically, so just wait until we can be sure that the ack reception should have finished
// The timeout consists of a 12-symbol turnaround time, the ack packet duration, and a small margin
halMcuWaitUs((12 * BASIC_RF_SYMBOL_DURATION) + (BASIC_RF_ACK_DURATION) + (2 * BASIC_RF_SYMBOL_DURATION) + 10);
// If an acknowledgment has been received (by RxFrmDoneIsr), the ackReceived flag should be set
status = txState.ackReceived ? SUCCESS : FAILED;
} else {
status = SUCCESS;
}
// Turn off the receiver if it should not continue to be enabled
//如果不需要继续接收则关闭接收
if (!txState.receiveOn) {
halRfReceiveOff();
}
if(status == SUCCESS) {
txState.txSeqNumber++;
}
#ifdef SECURITY_CCM
halRfIncNonceTx(); // Increment nonce value
#endif
return status;
}
根据以上basicRfSendPacket()基本流程:确保设备处于接收状态→确认数据有效长度→等待设备处于发送空闲状态→构建LEN+MPDU→LEN+MPDU写入TXFIFO→始能接收中断→执行发送选通命令进行数据发送→如果要求有ACK应答,则延时等待ACK→关闭接收状态; 另外从上述流程中可以看出,将数据写入TXFIFO并不进行数据的发送,需要通过相关的选通命令在启动发送!!
其中basicRfSendPacket()调用basicRfBuildMpdu()对上层(通常为应用层)产生的数据进行封包操作,介绍basicRfBuildMpdu()之前简单介绍下802.15.4数据帧结构。
以数据帧为例:
MAC的上层产生Payload作为 MAC Payload,即:MSDU;
MPDU = MHR + MAC Payload + MFR,即:PSDU;
PPDU = SHR + PHR + MPDU ;//PHR+MHR+MAC Payload 需要写入TXFIFO,SHR和MFR(AUTOCRC = 1时)硬件自动完成;
802.15.4数据帧结构简单介绍完毕,更具体的参见802.15.4协议文档,下面恢复正题;
/***********************************************************************************
* @fn basicRfBuildMpdu
*
* @brief Builds mpdu (MAC header + payload) according to IEEE 802.15.4
* frame format //根据802.15.4协议的帧结构 构建 MPDU(MAC帧头+净载荷数据,而由于AUTOCRC = 1则FCS不必手动写入TXFIFO,可以忽略但空间长度需要保留);
*
* @param destAddr - Destination short address //目的地址;
* pPayload - pointer to buffer with payload //净载荷数据buffer;
* payloadLength - length of payload buffer //净载荷数据长度;
*
* @return uint8 - length of mpdu //MPDU的长度= MAC Hdr + MAC Payload;
*/
static uint8 basicRfBuildMpdu(uint16 destAddr, uint8* pPayload, uint8 payloadLength)
{
uint8 hdrLength, n;
hdrLength = basicRfBuildHeader(txMpdu, destAddr, payloadLength); //构建lEN+MHR,见下面代码;
//将净载荷数据放置于 MHR 后 组成MPDU;
for(n=0;n<payloadLength;n++)
{
txMpdu[hdrLength+n] = pPayload[n];
}
return hdrLength + payloadLength; // total mpdu length
}
/***********************************************************************************
* @fn basicRfBuildHeader
*
* @brief Builds packet header according to IEEE 802.15.4 frame format
* //根据802.15.4 协议构建 帧头;
* @param buffer - Pointer to buffer to write the header //MPDU的buffer;
* destAddr - destination short address //目的短地址;
* payloadLength - length of higher layer payload //载荷数据长度;
*
* @return uint8 - length of header //帧头长度;
*/
static uint8 basicRfBuildHeader(uint8* buffer, uint16 destAddr, uint8 payloadLength)
{
basicRfPktHdr_t *pHdr; //帧头指针;
uint16 fcf; //存储帧控制域相关信息 变量;
pHdr= (basicRfPktHdr_t*)buffer; //帧头buffer 指向 MPDU buffer;
// Populate packet header
//将相关信息 存至 帧头buffer;
//帧头长度定义为
//#define BASIC_RF_PACKET_OVERHEAD_SIZE ((2 + 1 + 2 + 2 + 2) + (2))
//其对应关系为((FCF+SeqNum+PANID+DestAddr+SrcAddr)+(FCS))
//然后将帧头信息 赋值给帧头 buffer;
pHdr->packetLength = payloadLength + BASIC_RF_PACKET_OVERHEAD_SIZE;
//pHdr->frameControlField = pConfig->ackRequest ? BASIC_RF_FCF_ACK : BASIC_RF_FCF_NOACK;
fcf= pConfig->ackRequest ? BASIC_RF_FCF_ACK : BASIC_RF_FCF_NOACK;
pHdr->fcf0 = LO_UINT16(fcf);
pHdr->fcf1 = HI_UINT16(fcf);
pHdr->seqNumber= txState.txSeqNumber;
pHdr->panId= pConfig->panId;
pHdr->destAddr= destAddr;
pHdr->srcAddr= pConfig->myAddr;
#ifdef SECURITY_CCM
// Add security to FCF, length and security header
pHdr->fcf0 |= BASIC_RF_SEC_ENABLED_FCF_BM_L;
pHdr->packetLength += PKT_LEN_MIC;
pHdr->packetLength += BASIC_RF_AUX_HDR_LENGTH;
pHdr->securityControl= SECURITY_CONTROL;
pHdr->frameCounter[0]= LO_UINT16(LO_UINT32(txState.frameCounter));
pHdr->frameCounter[1]= HI_UINT16(LO_UINT32(txState.frameCounter));
pHdr->frameCounter[2]= LO_UINT16(HI_UINT32(txState.frameCounter));
pHdr->frameCounter[3]= HI_UINT16(HI_UINT32(txState.frameCounter));
#endif
// Make sure bytefields are network byte order
//高低位变换;无线电数据传输为先低位后高位,这样做是在为无线传输做准备??
UINT16_HTON(pHdr->panId);
UINT16_HTON(pHdr->destAddr);
UINT16_HTON(pHdr->srcAddr);
return BASIC_RF_HDR_SIZE;
}