高等数学:矩阵

一、矩阵概念

( a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a m 1 ⋯ a m n ) m × n \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} _{m\times n} a11am1a1namn m×n
矩阵的行为m,列为n

只有矩阵中各元素均对应相等,矩阵才相等

二、矩阵的运算

矩阵的和: C = A + B C=A+B C=A+B (相加的矩阵必须保证有相等的行数和列数)
A m × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] B m × n = [ b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b m 1 b m 2 ⋯ b m n ] A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} B_{m\times n}= \begin{bmatrix} b_{11}& b_{12}& \cdots & b_{1n} \\ b_{21}&b_{22}& \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1}& b_{m2}& \cdots & b_{mn} \end{bmatrix} Am×n= a11a21am1a12a22am2a1na2namn Bm×n= b11b21bm1b12b22bm2b1nb2nbmn
c m × n = A m × n + B m × n = [ a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ] c_{m\times n}=A_{m\times n}+B_{m\times n}= \begin{bmatrix} a_{11}+b_{11}& a_{12}+b_{12}& \cdots & a_{1n}+b_{1n} \\ a_{21}+b_{21}& a_{22}+b_{22}& \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1}& a_{m2}+b_{m2}& \cdots & a_{mn}+b_{mn} \end{bmatrix} cm×n=Am×n+Bm×n= a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn

结合律: A + ( B + C ) = ( A + B ) + C A+(B+C)=(A+B)+C A+(B+C)=(A+B)+C

交换律: A + B = B + A A+B=B+A A+B=B+A

矩阵的乘法:
A = ( a i k ) s × n , B = ( b k j ) n × m , 那么 C = A B = ( c i j ) s × m A=(a_{ik})_{s\times n},B =(b_{kj})_{n\times m} ,那么 C=AB=(c_{ij})_{s\times m} A=(aik)s×n,B=(bkj)n×m,那么C=AB=(cij)s×m
c i j = a i 1 b i 1 + a 2 i b i 2 + . . . + a i n b n j = ∑ k = 1 n a i k b k j c_{ij}=a_{i1}b_{i1}+a_{2i}b_{i2}+...+a_{in}b_{nj}=\sum_{k=1}^{n}{a_{ik}b_{kj}} cij=ai1bi1+a2ibi2+...+ainbnj=k=1naikbkj
一句话明白:矩阵A与B的乘积C的第i行第j列的元素等于第一个矩阵A的第一行与第二个矩阵B的第一列的对应元素的乘积

误区:

  1. A B ≠ B A AB\ne BA AB=BA
  2. A B = A C AB=AC AB=AC 不一定 ⇒ B = C \Rightarrow B=C B=C

单位矩阵:主对角线上元素全是1,其余元素全为0的n×n矩阵
[ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] \begin{bmatrix} 1& 0& \cdots & 0 \\ 0& 1& \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0& 0& \cdots & 1 \end{bmatrix} 100010001
称为n阶单位矩阵,记为 E n E_{n} En

数量乘法:
k A = [ k a 11 k a 12 ⋯ k a 1 n k a 21 k a 22 ⋯ k a 2 n ⋮ ⋮ ⋱ ⋮ k a m 1 k a m 2 ⋯ k a m n ] kA= \begin{bmatrix} ka_{11}& ka_{12}& \cdots & ka_{1n} \\ ka_{21}& ka_{22}& \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1}& ka_{m2}& \cdots & ka_{mn} \end{bmatrix} kA= ka11ka21kam1ka12ka22kam2ka1nka2nkamn
,A中每个元素都乘以k

转置(transform):
A m × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] m × n A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} _{m\times n} Am×n= a11a21am1a12a22am2a1na2namn m×n
A ⊤ = [ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 m a 2 m ⋯ a n m ] n × m A^{\top}= \begin{bmatrix} a_{11}& a_{21}& \cdots & a_{n1} \\ a_{12}& a_{22}& \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m}& a_{2m}& \cdots & a_{nm} \end{bmatrix} _{n\times m} A= a11a12a1ma21a22a2man1an2anm n×m
矩阵A的转置就是将A的行列互换

矩阵转置的规律:
( A ⊤ ) ⊤ = A ( A + B ) ⊤ = A ⊤ + B ⊤ ( A B ) ⊤ = B ⊤ A ⊤ ( k A ) ⊤ = k A ⊤ (A^{\top})^{\top}=A\\ (A+B)^{\top}=A^{\top}+B^{\top}\\ (AB)^{\top}=B^{\top}A^{\top}\\ (kA)^{\top}=kA^{\top} (A)=A(A+B)=A+B(AB)=BA(kA)=kA

三、矩阵乘积的行列式与秩

定理1:设A,B是数域P上的两个 n × n n\times n n×n 矩阵,那么

∣ A B ∣ = ∣ A ∣ ∣ B ∣ \left| AB \right|=\left| A \right| \left| B \right| AB=AB ,即矩阵乘积的行列式等于它因式的行列式的乘积

定理6:数域P上的 n × n n\times n n×n 矩阵A称为非退化的,如果 ∣ A ∣ ≠ 0 \left| A \right|\ne0 A=0 ;否则称为退化的。

定理2:设A是数域P上的 m × n m\times n m×n 矩阵,B是数域P上的 m × s m\times s m×s矩阵,于是有:

秩(AB) ≤ m i n [ 秩 ( A ) , 秩 ( B ) ] \leq min[ 秩(A),秩(B)] min[(A),(B)],即乘积的秩不超过各因式的秩

证明:只需证明 秩 ( A B ) ≤ 秩 ( A ) (AB)≤ 秩(A) (AB)(A) 秩 ( A B ) ≤ 秩 ( B ) 秩(AB)≤ 秩(B) (AB)(B)
A m × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] B n × s = [ b 11 b 12 ⋯ b 1 s b 21 b 22 ⋯ b 2 s ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 ⋯ b n s ] = [ B 1 B 2 ⋮ B n ] A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} B_{n\times s}= \begin{bmatrix} b_{11}& b_{12}& \cdots & b_{1s} \\ b_{21}&b_{22}& \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1}& b_{n2}& \cdots & b_{ns} \end{bmatrix} = \begin{bmatrix} B_{1}\\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix} Am×n= a11a21am1a12a22am2a1na2namn Bn×s= b11b21bn1b12b22bn2b1sb2sbns = B1B2Bn

其中 B 1 , B 2 . . . B n B_{1},B_{2}...B_{n} B1,B2...Bn 表示矩阵B的行向量, C 1 , C 2 . . . C m C_{1},C_{2}...C_{m} C1,C2...Cm 表示矩阵AB的行向量
C i = a i 1 B 1 + a i 2 B 2 + . . . + a i n B n , i = 1 , 2... n C_{i}=a_{i1}B_{1}+a_{i2}B_{2}+...+a_{in}B_{n},i=1,2...n Ci=ai1B1+ai2B2+...+ainBn,i=1,2...n
即矩阵AB的行向量可以由矩阵的B的行向量线性表出,所以

矩阵AB的秩不能超过矩阵A的秩(由结论“如果向量组1可由向量组2线性表出,那么向量组1的秩不超过向量组2的秩”得)

同理,将A写成列向量形式,也能得到矩阵AB的秩不能超过B的秩

综上所述: 秩( A B ) ≤ m i n [ 秩( A ) , 秩( B ) ] 秩(AB)\leq min[ 秩(A),秩(B)] 秩(ABmin[秩(A,秩(B]

推论:如果 A = A 1 A 2 . . . A n A=A_{1}A_{2}...A_{n} A=A1A2...An那么,
r ( A ) ≤ m i n [ r ( A 1 ) , r ( A 2 ) . . . r ( A n ) ] r(A)\leq min[r(A_{1}),r(A_{2})...r(A_{n})] r(A)min[r(A1),r(A2)...r(An)]

四、矩阵的逆(inv)

定义7:n阶方阵A称为可逆的,如果有n阶方阵B使得 A B = B A = E AB=BA=E AB=BA=E, E 是单位矩阵

其中矩阵B是矩阵A的逆矩阵,记作 B = A − 1 B=A^{-1} B=A1

逆矩阵的两种计算方法:

1)伴随矩阵:
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{bmatrix} A= a11a21an1a12a22an2a1na2nann
求出A的伴随矩阵
A ∗ = [ A 11 A 12 ⋯ A 1 n A 21 A 22 ⋯ A 2 n ⋮ ⋮ ⋱ ⋮ A n 1 A n 2 ⋯ A n n ] A^{*}=\begin{bmatrix} A_{11}& A_{12}& \cdots & A_{1n} \\ A_{21}& A_{22}& \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1}& A_{n2}& \cdots & A_{nn} \end{bmatrix} A= A11A21An1A12A22An2A1nA2nAnn
( A i j A_{ij} Aij矩阵A的代数余子式)
A A ∗ = A ∗ A = d E AA^{*}=A^{*}A=dE AA=AA=dE
∴ A − 1 = 1 ∣ A ∣ A ∗ ( 前提是 ∣ A ∣ ≠ 0 ) \therefore A^{-1}=\frac{1}{|A|}A^{*} (前提是|A|≠0) A1=A1A(前提是A=0)

2)初等矩阵:

(A,E)列变换和相应的行变换后得到 ( E , A − 1 ) (E,A^{-1}) (E,A1)

举个例子:求
A = ( 0 1 2 1 1 4 2 − 1 0 ) A=\begin{pmatrix} 0 & 1 & 2\\ 1 & 1 & 4\\ 2 & -1 &0 \end{pmatrix} A= 012111240
的逆矩阵
( A , E ) = ( 0 1 2 1 0 0 1 1 4 0 1 0 2 − 1 0 0 0 1 ) (A,E)=\begin{pmatrix} 0 & 1 & 2&1&0&0\\ 1 & 1 & 4&0&1&0\\ 2 & -1 &0&0&0&1 \end{pmatrix} (A,E)= 012111240100010001
经过一系列初等行列变换之后得到
( E , A − 1 ) = ( 1 0 0 2 − 1 1 0 1 0 4 − 2 1 0 0 1 − 3 2 1 − 1 2 ) (E,A^{-1})=\begin{pmatrix} 1 & 0 & 0&2&-1&1\\ 0 & 1 & 0&4&-2&1\\ 0 & 0 &1&-\frac{3}{2} &1&-\frac{1}{2} \end{pmatrix} (E,A1)= 10001000124231211121
A − 1 = ( 2 − 1 1 4 − 2 1 − 3 2 1 − 1 2 ) A^{-1}=\begin{pmatrix} 2&-1&1\\ 4&-2&1\\ -\frac{3}{2} &1&-\frac{1}{2} \end{pmatrix} A1= 24231211121

推论:如果矩阵A,B可逆,那么 A − 1 A^{-1} A1与AB也可逆 ,且
( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1}=(A^{-1})^{T} (AT)1=(A1)T
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
( k A ) − 1 = 1 k A − 1 ( k ≠ 0 ) (kA)^{-1}=\frac{1}{k}A^{-1}(k\ne 0) (kA)1=k1A1(k=0)

五、初等矩阵

定义10:由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵

左乘行变换,右乘列变换

定义11:如果B可以由A经过一系列初等变换得到,则称A与B等价

六、有关矩阵的解题技巧

1) 秩( A + B ) ≤  秩( A )+秩( B ) 秩(A+B)≤ 秩(A)+秩(B) 秩(AB 秩(A)+秩(B

2) 秩( A B ) ≤  min(秩( A ),秩( B )) 秩(AB)≤ min(秩(A),秩(B)) 秩(AB min(秩(A),秩(B))

3) ∣ k A ∣ = k n ∣ A ∣ (A为n阶矩阵) \left | kA \right | =k^{n}|A| (A为n阶矩阵) kAknA(A为n阶矩阵)

4)A为三阶矩阵, | A |=2 |A|=2 A|=2
∣ ( 2A ) -1 -3 A * ∣ = ∣ 1 2 A − 1 − 3 A ∗ ∣ = ∣ 1 2 A − 1 − 3 ∣ A ∣ A − 1 ∣ = ∣ − 11 2 A − 1 ∣ = ( − 11 2 ) 3 1 ∣ A ∣ \left| \left( 2A \right)^{-1} -3A^{*}\right|=|\frac{1}{2}A^{-1}-3A^{*}|=|\frac{1}{2}A^{-1}-3|A|A^{-1}|=|-\frac{11}{2}A^{-1}|=(-\frac{11}{2})^{3}\frac{1}{|A|} (2A)-1-3 =21A13A=21A13∣AA1=211A1=(211)3A1
5)设A是 n × n n\times n n×n矩阵,如果对任意一n维向量
X = ( x 1 x 2 ⋮ x n ) X =\begin{pmatrix}x_{1} \\x_{2} \\\vdots \\x_{n} \end{pmatrix} X= x1x2xn
都有 A X = 0 ,那么 A = 0 AX=0,那么A=0 AX=0,那么A=0

证明:取
X = ( 1 0 ⋮ 0 ) X =\begin{pmatrix}1 \\0 \\\vdots \\0 \end{pmatrix} X= 100
或者
( 0 1 ⋮ 0 ) \begin{pmatrix}0 \\1 \\\vdots \\0 \end{pmatrix} 010
或者
( 0 0 ⋮ 1 ) \begin{pmatrix}0 \\0 \\\vdots \\1 \end{pmatrix} 001
带入计算得A中每一个元素都为0,即A为零矩阵

6)设B为 r × r r\times r r×r矩阵,C是 r × n r\times n r×n矩阵,且秩 ( C ) = r (C)=r C=r,证明:

1.如果 BC= 0,那么B=0

2.如果 BC= C,那么B=E

证明:1) ∵ r ( C ) = r \because r(C)=r r(C)=r

不妨取C的极大线性无关组为 C 1 , C 2 . . . C r C_{1},C_{2}...C_{r} C1,C2...Cr
B C = 0 ⇒ B ( C 1 , C 2 . . . C r ) = 0 BC = 0\Rightarrow B(C_{1},C_{2}...C_{r})=0 BC=0B(C1,C2...Cr)=0
( C 1 , C 2 . . . C r ) ≠ 0 (C_{1},C_{2}...C_{r})\ne 0 (C1,C2...Cr)=0 ,可逆

所以,B=0

2)同1)可得 B C = C ⇒ ( B − E ) ( C 1 , C 2 . . . C r ) = 0 BC=C\Rightarrow (B-E)(C_{1},C_{2}...C_{r})=0 BC=C(BE)(C1,C2...Cr)=0

( C 1 , C 2 . . . C r ) ≠ 0 (C_{1},C_{2}...C_{r})\ne 0 (C1,C2...Cr)=0,可逆

所以,B=E

欢迎各位看官拍砖指正,有一些

猜你喜欢

转载自blog.csdn.net/m0_71905144/article/details/132475165