【图像分类】2022-CycleMLP ICLR

【图像分类】2022-CycleMLP ICLR

论文题目:CycleMLP: A MLP-like Architecture for Dense Prediction

论文链接:https://arxiv.org/abs/2107.10224

代码链接:https://github.com/ShoufaChen/CycleMLP

视频讲解:https://www.bilibili.com/video/BV1UA4y1Q7Sc

发表时间:2021年7月

作者团队:香港大学

引用:Chen S, Xie E, Ge C, et al. Cyclemlp: A mlp-like architecture for dense prediction[J]. arXiv preprint arXiv:2107.10224, 2021.

引用数:53

1. 简介

1.1 简介

Transformer之后,基于MLP的网络结构设计引起了一波新的研究热潮。这种没有Attention的结构在多个领域任务取得了不凡的结果。

具体分享提纲如下:

  1. 普通MLP网络结构(MLP-Mixer, gMLP, ResMLP等)的局限性
  2. Cycle MLP,一种通用的MLP结构
  3. MLP结构的广泛应用

1.2 摘要

CycleMLP是AS-MLP之外的另外一个可以作为通用骨架的MLP架构(AS-MLP是首个迁移到下游任务的 MLP 架构),MLP-Mixer, ResMLP 与gMLP架构与图像大小相关,因为其不能作为下游任务的通用骨干。

与现在的MLP方法相比,CycleMLP有两个优点:

1)可以处理各种图像大小

2)利用局部窗口实现图像大小的线性计算复杂度。相比之下,以往的mlp具有二次计算复杂度,因为它们空间上的全连接。

作者扩展了MLP架构的适用性,使其成为密集预测任务的通用主干。性能效果:

  • 83.2% accuracy on ImageNet-1K classification ( Swin Transformer 83.3%)
  • achieves 45.1 mIoU on ADE20K val(Swin 45.2 mIOU)

1.3 存在的问题

尽管在视觉识别任务中得到了很好的结果,但由于两个原因,这些mlp类模型不能用于其他下游任务(比如目标检测与语义分割):

1)这样的模型由具有相同架构的块组成,导致在低分辨率下具有单一尺度的特征。因此,非层次结构使得模型无法提供金字塔特征表示。

2)这些模型无法处理灵活的输入尺度,因此在训练和验证阶段都需要一个固定的输入规模。

3)Spatial FC的计算复杂度是图像大小的平方,这使得现有的mlp类模型难以在高分辨率图像上实现。

对于第一个问题,作者构建了一个层次结构来生成金字塔特征表示。对于第二三个问题,作者提出了一个全连接层的新变种,命名为循环全连接层(Cycle FC),Cycle FC能够处理可变的图像尺度,对图像大小具有线性的计算复杂度。

对于Spatial FC来说,由于需要限定patch的HW大小,所以无法做到可变处理,但是感受野较大,复杂度也较大;而Channel FC,由于线性投影的维度是可以设定的,没有信息交互的过程,但是复杂度较小,所以可以做到可变处理。
image-20220809110744630

2. 网络

2.1 网络架构

类似的,对于输入图像为HxWxC的图像,通过带有重叠的卷积变成一系列的patch(卷积核为7,步长为4,带重叠的卷积效果会更好),然后对channel进行一个线性投影成(H/4)x(W/4)xC。然后,依次在patch tokens上应用几个Cycle FC block,具有相同架构的block被堆叠成一个Stage。在每个Stage中维护token的数量(特征规模)。而在每个阶段转换中,在tokens数量减少的同时,所处理的tokens的channel维度得到扩展。通过该策略有效降低了空间分辨率的复杂性。

image-20220809151530540

  • patch embedding module: window size 7, stride 4,最终特征下采样四倍。
  • 中间通过跨步卷积实现 2 倍下采样。
  • 最终输出为下采样 32 倍的特征。
  • 最终使用一个全连接层整合所有 token 的特征。

2.2 CycleFC Block

Cycle FC block由三个并行的Cycle FC算子组成,然后是一个具有两个线性层和中间一个GELU非线性的channel mlp。

image-20220809111943310

Channel FC由特定层的内外通道维度配置。它的结构与图像的尺度无关。因此它是一种尺度不可知的操作,可以处理输入图像的可变尺度,这对于密集预测任务是必不可少的。此外,信道FC的另一个优点是它对图像尺度的线性计算复杂度。然而,它的感受野有限,不能聚合足够的上下文,Channel FC由于缺乏上下文信息而产生较差的结果。

为了在保持计算复杂度的同时扩大感受野,Cycle FC被设计成与Channels FC一样沿着Channels维度进行全连接,但是并不是采样点都位于相同空间位置,而是以阶梯式风格采样点。

import os
import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
import math
from torch import Tensor
from torch.nn import init
from torch.nn.modules.utils import _pair
from torchvision.ops.deform_conv import deform_conv2d as deform_conv2d_tv


class CycleFC(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size,  # re-defined kernel_size, represent the spatial area of staircase FC
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = True,
    ):
        """
        这里的kernel_size实际使用的时候时3x1或者1x3
        """
        super(CycleFC, self).__init__()

        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        if stride != 1:
            raise ValueError('stride must be 1')
        if padding != 0:
            raise ValueError('padding must be 0')

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups

        # 被偏移调整的1x1卷积的权重,由于后面使用torchvision提供的可变形卷积的函数,所以权重需要自己构造
        self.weight = nn.Parameter(torch.empty(out_channels, in_channels // groups, 1, 1))
        # kernel size == 1

        if bias:
            self.bias = nn.Parameter(torch.empty(out_channels))
        else:
            self.register_parameter('bias', None)
        # 要注意,这里是在注册一个buffer,是一个常量,不可学习,但是可以保存到模型权重中。
        self.register_buffer('offset', self.gen_offset())

    def gen_offset(self):
        """
        生成卷积核偏移量的核心操作。
        要想理解这一函数的操作,需要首先理解后面使用的deform_conv2d_tv的具体用法。
        具体可见:https://pytorch.org/vision/0.10/ops.html#torchvision.ops.deform_conv2d
        这里对于offset参数的要求是:
        offset (Tensor[batch_size,
                       2 * offset_groups * kernel_height * kernel_width,
                       out_height,
                       out_width])
                       – offsets to be applied for each position in the convolution kernel.
        也就是说,对于样本s的输出特征图的通道c中的位置(x,y),这个函数会从offset中取出,形状为
        kernel_height*kernel_width的卷积核所对应的偏移参数为
        offset[s, 0:2*offset_groups*kernel_height*kernel_width, x, y]
        也就是这一系列参数都是对应样本s的单个位置(x,y)的。
        针对不同的位置可以有不同的offset,也可以有相同的(下面的实现就是后者)。
        对于这2*offset_groups*kernel_height*kernel_width个数,涉及到对于输入特征通道的分组。
        将其分成offset_groups组,每份单独拥有一组对应于卷积核中心位置的相对偏移量,
        共2*kernel_height*kernel_width个数。
        对于每个核参数,使用两个量来描述偏移,即h方向和w方向相对中心位置的偏移,
        即下面代码中的减去kernel_height//2或者kernel_width//2。
        需要注意的是,当偏移位置位于padding后的tensor边界外,则是将网格使用0补齐。
        如果网格上有边界值,则使用边界值和用0补齐的网格顶点来计算双线性插值的结果。
        """
        offset = torch.empty(1, self.in_channels*2, 1, 1)
        start_idx = (self.kernel_size[0] * self.kernel_size[1]) // 2
        assert self.kernel_size[0] == 1 or self.kernel_size[1] == 1, self.kernel_size
        for i in range(self.in_channels):
            if self.kernel_size[0] == 1:
                offset[0, 2 * i + 0, 0, 0] = 0
                # 这里计算了一个相对偏移位置。
                # deform_conv2d使用的以对应输出位置为中心的偏移坐标索引方式
                offset[0, 2 * i + 1, 0, 0] = (
                    (i + start_idx) % self.kernel_size[1] - (self.kernel_size[1] // 2)
                )
            else:
                offset[0, 2 * i + 0, 0, 0] = (
                    (i + start_idx) % self.kernel_size[0] - (self.kernel_size[0] // 2)
                )
                offset[0, 2 * i + 1, 0, 0] = 0
        return offset

    def forward(self, input: Tensor) -> Tensor:
        """
        Args:
            input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
        """
        B, C, H, W = input.size()
        return deform_conv2d_tv(input,
                                self.offset.expand(B, -1, H, W),
                                self.weight,
                                self.bias,
                                stride=self.stride,
                                padding=self.padding,
                                dilation=self.dilation)
class CycleMLP(nn.Module):
    def __init__(self, dim, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias)

        self.sfc_h = CycleFC(dim, dim, (1, 3), 1, 0)
        self.sfc_w = CycleFC(dim, dim, (3, 1), 1, 0)

        self.reweight = Mlp(dim, dim // 4, dim * 3)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, H, W, C = x.shape
        h = self.sfc_h(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        w = self.sfc_w(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        c = self.mlp_c(x)

        a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2)
        a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2)

        x = h * a[0] + w * a[1] + c * a[2]

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class CycleBlock(nn.Module):

    def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=CycleMLP):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = mlp_fn(dim, qkv_bias=qkv_bias, qk_scale=None, attn_drop=attn_drop)

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
        self.skip_lam = skip_lam

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
        x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam
        return x

没怎么看懂Cycle FC算子怎么运行的?

文章还给了不同的step_size的效果?当伪内核大小配置为1×1时,Cycle FC退化为普通Channels FC

image-20220809155221569

image-20220809155231326

3. 代码

import os
import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
import math
from torch import Tensor
from torch.nn import init
from torch.nn.modules.utils import _pair
from torchvision.ops.deform_conv import deform_conv2d as deform_conv2d_tv


def _cfg(url='', **kwargs):
    return {
    
    
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .96, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
        **kwargs
    }

default_cfgs = {
    
    
    'cycle_S': _cfg(crop_pct=0.9),
    'cycle_M': _cfg(crop_pct=0.9),
    'cycle_L': _cfg(crop_pct=0.875),
}


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CycleFC(nn.Module):
    """
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size,  # re-defined kernel_size, represent the spatial area of staircase FC
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = True,
    ):
        super(CycleFC, self).__init__()

        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        if stride != 1:
            raise ValueError('stride must be 1')
        if padding != 0:
            raise ValueError('padding must be 0')

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups

        self.weight = nn.Parameter(torch.empty(out_channels, in_channels // groups, 1, 1))  # kernel size == 1

        if bias:
            self.bias = nn.Parameter(torch.empty(out_channels))
        else:
            self.register_parameter('bias', None)
        self.register_buffer('offset', self.gen_offset())

        self.reset_parameters()

    def reset_parameters(self) -> None:
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))

        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound)

    def gen_offset(self):
        """
        offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
            out_height, out_width]): offsets to be applied for each position in the
            convolution kernel.
        """
        offset = torch.empty(1, self.in_channels*2, 1, 1)
        start_idx = (self.kernel_size[0] * self.kernel_size[1]) // 2
        assert self.kernel_size[0] == 1 or self.kernel_size[1] == 1, self.kernel_size
        for i in range(self.in_channels):
            if self.kernel_size[0] == 1:
                offset[0, 2 * i + 0, 0, 0] = 0
                offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % self.kernel_size[1] - (self.kernel_size[1] // 2)
            else:
                offset[0, 2 * i + 0, 0, 0] = (i + start_idx) % self.kernel_size[0] - (self.kernel_size[0] // 2)
                offset[0, 2 * i + 1, 0, 0] = 0
        return offset

    def forward(self, input: Tensor) -> Tensor:
        """
        Args:
            input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
        """
        B, C, H, W = input.size()
        return deform_conv2d_tv(input, self.offset.expand(B, -1, H, W), self.weight, self.bias, stride=self.stride,
                                padding=self.padding, dilation=self.dilation)

    def extra_repr(self) -> str:
        s = self.__class__.__name__ + '('
        s += '{in_channels}'
        s += ', {out_channels}'
        s += ', kernel_size={kernel_size}'
        s += ', stride={stride}'
        s += ', padding={padding}' if self.padding != (0, 0) else ''
        s += ', dilation={dilation}' if self.dilation != (1, 1) else ''
        s += ', groups={groups}' if self.groups != 1 else ''
        s += ', bias=False' if self.bias is None else ''
        s += ')'
        return s.format(**self.__dict__)


class CycleMLP(nn.Module):
    def __init__(self, dim, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias)

        self.sfc_h = CycleFC(dim, dim, (1, 3), 1, 0)
        self.sfc_w = CycleFC(dim, dim, (3, 1), 1, 0)

        self.reweight = Mlp(dim, dim // 4, dim * 3)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, H, W, C = x.shape
        h = self.sfc_h(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        w = self.sfc_w(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        c = self.mlp_c(x)

        a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2)
        a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2)

        x = h * a[0] + w * a[1] + c * a[2]

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class CycleBlock(nn.Module):

    def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=CycleMLP):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = mlp_fn(dim, qkv_bias=qkv_bias, qk_scale=None, attn_drop=attn_drop)

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
        self.skip_lam = skip_lam

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
        x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam
        return x


class PatchEmbedOverlapping(nn.Module):
    """ 2D Image to Patch Embedding with overlapping
    """
    def __init__(self, patch_size=16, stride=16, padding=0, in_chans=3, embed_dim=768, norm_layer=None, groups=1):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        self.patch_size = patch_size
        # remove image_size in model init to support dynamic image size

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding, groups=groups)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        return x


class Downsample(nn.Module):
    """ Downsample transition stage
    """
    def __init__(self, in_embed_dim, out_embed_dim, patch_size):
        super().__init__()
        assert patch_size == 2, patch_size
        self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=(3, 3), stride=(2, 2), padding=1)

    def forward(self, x):
        x = x.permute(0, 3, 1, 2)
        x = self.proj(x)  # B, C, H, W
        x = x.permute(0, 2, 3, 1)
        return x


def basic_blocks(dim, index, layers, mlp_ratio=3., qkv_bias=False, qk_scale=None, attn_drop=0.,
                 drop_path_rate=0., skip_lam=1.0, mlp_fn=CycleMLP, **kwargs):
    blocks = []

    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
        blocks.append(CycleBlock(dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                      attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn))
    blocks = nn.Sequential(*blocks)

    return blocks


class CycleNet(nn.Module):
    """ CycleMLP Network """
    def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
        embed_dims=None, transitions=None, segment_dim=None, mlp_ratios=None, skip_lam=1.0,
        qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
        norm_layer=nn.LayerNorm, mlp_fn=CycleMLP, fork_feat=False):

        super().__init__()
        if not fork_feat:
            self.num_classes = num_classes
        self.fork_feat = fork_feat

        self.patch_embed = PatchEmbedOverlapping(patch_size=7, stride=4, padding=2, in_chans=3, embed_dim=embed_dims[0])

        network = []
        for i in range(len(layers)):
            stage = basic_blocks(embed_dims[i], i, layers, mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
                                 qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate,
                                 norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if transitions[i] or embed_dims[i] != embed_dims[i+1]:
                patch_size = 2 if transitions[i] else 1
                network.append(Downsample(embed_dims[i], embed_dims[i+1], patch_size))

        self.network = nn.ModuleList(network)

        if self.fork_feat:
            # add a norm layer for each output
            self.out_indices = [0, 2, 4, 6]
            for i_emb, i_layer in enumerate(self.out_indices):
                if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                    # TODO: more elegant way
                    """For RetinaNet, `start_level=1`. The first norm layer will not used.
                    cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
                    """
                    layer = nn.Identity()
                else:
                    layer = norm_layer(embed_dims[i_emb])
                layer_name = f'norm{
      
      i_layer}'
                self.add_module(layer_name, layer)
        else:
            # Classifier head
            self.norm = norm_layer(embed_dims[-1])
            self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
        self.apply(self.cls_init_weights)

    def cls_init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, CycleFC):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def init_weights(self, pretrained=None):
        """ mmseg or mmdet `init_weight` """
        if isinstance(pretrained, str):
            pass
            # logger = get_root_logger()
            # load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_embeddings(self, x):
        x = self.patch_embed(x)
        # B,C,H,W-> B,H,W,C
        x = x.permute(0, 2, 3, 1)
        return x

    def forward_tokens(self, x):
        outs = []
        for idx, block in enumerate(self.network):
            x = block(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{
      
      idx}')
                x_out = norm_layer(x)
                outs.append(x_out.permute(0, 3, 1, 2).contiguous())
        if self.fork_feat:
            return outs

        B, H, W, C = x.shape
        x = x.reshape(B, -1, C)
        return x

    def forward(self, x):
        x = self.forward_embeddings(x)
        # B, H, W, C -> B, N, C
        x = self.forward_tokens(x)
        if self.fork_feat:
            return x

        x = self.norm(x)
        cls_out = self.head(x.mean(1))
        return cls_out



def CycleMLP_B1(pretrained=False, **kwargs):
    transitions = [True, True, True, True]
    layers = [2, 2, 4, 2]
    mlp_ratios = [4, 4, 4, 4]
    embed_dims = [64, 128, 320, 512]
    model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                     mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
    model.default_cfg = default_cfgs['cycle_S']
    return model



def CycleMLP_B2(pretrained=False, **kwargs):
    transitions = [True, True, True, True]
    layers = [2, 3, 10, 3]
    mlp_ratios = [4, 4, 4, 4]
    embed_dims = [64, 128, 320, 512]
    model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                     mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
    model.default_cfg = default_cfgs['cycle_S']
    return model



def CycleMLP_B3(pretrained=False, **kwargs):
    transitions = [True, True, True, True]
    layers = [3, 4, 18, 3]
    mlp_ratios = [8, 8, 4, 4]
    embed_dims = [64, 128, 320, 512]
    model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                     mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
    model.default_cfg = default_cfgs['cycle_M']
    return model



def CycleMLP_B4(pretrained=False, **kwargs):
    transitions = [True, True, True, True]
    layers = [3, 8, 27, 3]
    mlp_ratios = [8, 8, 4, 4]
    embed_dims = [64, 128, 320, 512]
    model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                     mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
    model.default_cfg = default_cfgs['cycle_L']
    return model



def CycleMLP_B5(pretrained=False, **kwargs):
    transitions = [True, True, True, True]
    layers = [3, 4, 24, 3]
    mlp_ratios = [4, 4, 4, 4]
    embed_dims = [96, 192, 384, 768]
    model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                     mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
    model.default_cfg = default_cfgs['cycle_L']
    return model


class CycleMLP_B1_feat(CycleNet):
    def __init__(self, **kwargs):
        transitions = [True, True, True, True]
        layers = [2, 2, 4, 2]
        mlp_ratios = [4, 4, 4, 4]
        embed_dims = [64, 128, 320, 512]
        super(CycleMLP_B1_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                                               mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)


class CycleMLP_B2_feat(CycleNet):
    def __init__(self, **kwargs):
        transitions = [True, True, True, True]
        layers = [2, 3, 10, 3]
        mlp_ratios = [4, 4, 4, 4]
        embed_dims = [64, 128, 320, 512]
        super(CycleMLP_B2_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                                               mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)


class CycleMLP_B3_feat(CycleNet):
    def __init__(self, **kwargs):
        transitions = [True, True, True, True]
        layers = [3, 4, 18, 3]
        mlp_ratios = [8, 8, 4, 4]
        embed_dims = [64, 128, 320, 512]
        super(CycleMLP_B3_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                                               mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)


class CycleMLP_B4_feat(CycleNet):
    def __init__(self, **kwargs):
        transitions = [True, True, True, True]
        layers = [3, 8, 27, 3]
        mlp_ratios = [8, 8, 4, 4]
        embed_dims = [64, 128, 320, 512]
        super(CycleMLP_B4_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                                               mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)


class CycleMLP_B5_feat(CycleNet):
    def __init__(self, **kwargs):
        transitions = [True, True, True, True]
        layers = [3, 4, 24, 3]
        mlp_ratios = [4, 4, 4, 4]
        embed_dims = [96, 192, 384, 768]
        super(CycleMLP_B5_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                                               mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)

猜你喜欢

转载自blog.csdn.net/wujing1_1/article/details/126249556