2020年华为C/C++ linux后台开发岗精选面试题及答案

  1. static有什么用途?(请至少说明两种)
  1. 在函数体,一个被声明为静态的变量在这一函数被调用过程中维持其值不变。

  2. 在模块内(但在函数体外),一个被声明为静态的变量可以被模块内所用函数访问,但不能被模块外其它函数访问。它是一个本地的全局变量。

  3. 在模块内,一个被声明为静态的函数只可被这一模块内的其它函数调用。那就是,这个函数被限制在声明它的模块的本地范围内使用

  1. 引用与指针有什么区别?
  1. 引用必须被初始化,指针不必。

  2. 引用初始化以后不能被改变,指针可以改变所指的对象。

  3. 不存在指向空值的引用,但是存在指向空值的指针。

  1. 阅读下面代码,回答问题.
    void GetMemory(char **p, int num){
    *p = (char *)malloc(num);
    }
    void Test(void){
    char *str = NULL;
    GetMemory(&str, 100);
    strcpy(str, “hello”);
    printf(str);
    }
    请问运行Test 函数会有什么样的结果?

输出“hello”

char *GetMemory(void){
char p[] = “hello world”;
return p;
}
void Test(void){
char *str = NULL;
str = GetMemory();
printf(str);
}
请问运行Test 函数会有什么样的结果?

无效的指针,输出不确定

4、程序什么时候应该使用线程,什么时候单线程效率高。
1.耗时的操作使用线程,提高应用程序响应

2.并行操作时使用线程,如C/S架构的服务器端并发线程响应用户的请求。

3.多CPU系统中,使用线程提高CPU利用率

4.改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独

立的运行部分,这样的程序会利于理解和修改。

其他情况都使用单线程。

5、Linux有内核级线程吗?
线程通常被定义为一个进程中代码的不同执行路线。从实现方式上划分,线程有两种类型:“用户级线程”和“内核级线程”。

用户线程指不需要内核支持而在用户程序中实现的线程,其不依赖于操作系统核心,应用进程利用线程库提供创建、同步、调度和管理线程的函数来控制用户线程。这种线程甚至在象 DOS 这样的操作系统中也可实现,但线程的调度需要用户程序完成,这有些类似 Windows 3.x 的协作式多任务。另外一种则需要内核的参与,由内核完成线程的调度。其依赖于操作系统核心,由内核的内部需求进行创建和撤销,这两种模型各有其好处和缺点。用户线程不需要额外的内核开支

,并且用户态线程的实现方式可以被定制或修改以适应特殊应用的要求,但是当一个线程因 I/O 而处于等待状态时,整个进程就会被调度程序切换为等待状态,其他线程得不到运行的机会;而内核线程则没有各个限制,有利于发挥多处理器的并发优势,但却占用了更多的系统开支。

Windows NT和OS/2支持内核线程。Linux 支持内核级的多线程。

6、使用线程是如何防止出现大的波峰。
意思是如何防止同时产生大量的线程,方法是使用线程池,线程池具有可以同时提高调度效率和限制资源使用的好处,线程池中的线程达到最大数时,其他线程就会排队等候。

7、winsock建立连接的主要实现步骤?
服务器端:socker()建立套接字,绑定(bind)并监听(listen),用accept()等待客户端连接。

客户端:socker()建立套接字,连接(connect)服务器,连接上后使用send()和recv(),在套接字上写读数据,直至数据交换完毕,closesocket()关闭套接字。

服务器端:accept()发现有客户端连接,建立一个新的套接字,自身重新开始等待连接。该新产生的套接字使用send()和recv()写读数据,直至数据交换完毕,closesocket()关闭套接字。

8、列举几种进程的同步机制及优缺点
1)信号量机制:
一个信号量只能置一次初值,以后只能对之进行p操作或v操作。

由此也可以看到,信号量机制必须有公共内存,不能用于分布式操作系统,这是它最大的弱点。

2)自旋锁:
旋锁是为了保护共享资源提出的一种锁机制。

调用者申请的资源如果被占用,即自旋锁被已经被别的执行单元保持,则调用者一直循环在那里看是否该自旋锁的保持着已经释放了锁. 自旋锁是一种比较低级的保护数据结构和代码片段的原始方式,可能会引起以下两个问题;

(1)死锁

(2)过多地占用CPU资源

3)管程:
信号量机制功能强大,但使用时对信号量的操作分散,而且难以控制,读写和维护都很困难。因此后来又提出了一种集中式同步进程——管程。其基本思想是将共享变量

和对它们的操作集中在一个模块中,操作系统或并发程序就由这样的模块构成。这样模块之间联系清晰,便于维护和修改,易于保证正确性。

4)会合:
进程直接进行相互作用

5)分布式系统:
由于在分布式操作系统中没有公共内存,因此参数全为值参,

而且不可为指针。

优缺点:

信号量(Semaphore)及PV操作

优:PV操作能够实现对临界区的管理要求;实现简单;允许使用它的代码休眠,持有锁的时间可相对较长。

缺:信号量机制必须有公共内存,不能用于分布式操作系统,这是它最大的弱点。信号量机制功能强大,但使用时对信号量的操作分散,而且难以控制,读写和维护都很困难。

加重了程序员的编码负担;核心操作P-V分散在各用户程序的代码中,不易控制和管理;一旦错误,后果严重,且不易发现和纠正。

自旋锁:

优:旋锁是为了保护共享资源提出的一种锁机制; 调用者申请的资源如果被占用,即自旋锁已经被别的执行单元保持,则调用者一直循环在那里看是否该自旋锁的保持者

已经释放了锁; 低开销;安全和高效;

缺:自旋锁是一种比较低级的保护数据结构和代码片段的原始方式,可能会引起以下两个问题;

(1)死锁

(2)过多地占用CPU资源

传统自旋锁由于无序竞争会导致“公平性”问题

管程:

优: 集中式同步进程——管程。其基本思想是将共享变量和对它们的操作集中在一个模块中,操作系统或并发程序就由这样的模块构成。这样模块之间联系清晰,便于维护和修改,

易于保证正确性。

缺:如果一个分布式系统具有多个CPU,并且每个CPU拥有自己的私有内存,它们通过一个局域网相连,那么这些原语将失效。而管程在少数几种编程语言之外又无

法使用,并且,这些原语均未提供机器间的信息交换方法。

会合:
进程直接进行相互作用

分布式系统:
消息和rpc

由于在分布式操作系统中没有公共内存,因此参数全为值参,而且不可为指针

9、线程与进程的区别和联系?线程是否具有相同的堆栈?d是否有独立的堆栈?
进程是死的,只是一些资源的集合,真正的程序执行都是线程来完成的,程序启动的时候操作系统就帮你创建线程。每个线程有自己的堆栈。DLL中有没有独立的堆栈,这个问题不好回答,或者说这个问题本身是否有问题。因为DLL中的代码是被某些线程所执行;只有线程拥有堆栈,如果DLL中的代码是EXE中的线程所调用,那么这个时候是不是说这个DLL没有自己独立的堆栈?如果DLL中的代码是由DLL自己创建的线程所执行,那么是不是说DLL有独立的堆栈?

以上讲的是堆栈,如果对于堆来说,每个DLL有自己的堆,所以如果是从DLL中动态分配的内存,最好是从DLL中刪除,如果你从DLL中分配内存,然后在EXE中,或者另外一个DLL中删除,很有可能导致程序崩溃.

10、画出三次握手和四次挥手流程图。
TCP 三次握手
在这里插入图片描述
TCP 四次挥手
在这里插入图片描述

11、redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?
redis 持久化的两种方式

RDB:RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。

AOF:AOF 机制对每条写入命令作为日志,以 append-only 的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放 AOF 日志中的写入指令来重新构建整个数据集。

通过 RDB 或 AOF,都可以将 redis 内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云等云服务。

如果 redis 挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动 redis,redis 就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务。

如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用 AOF 来重新构建数据,因为 AOF 中的数据更加完整。

RDB 优缺点

RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份redis中的数据。

RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis 保持高性能,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。

相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。

如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。

RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒。

AOF 优缺点

AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次fsync操作,最多丢失 1 秒钟的数据。

AOF 日志文件以 append-only 模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。

AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在 rewrite log 的时候,会对其中的指导进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。

AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用 flushall 命令清空了所有数据,只要这个时候后台 rewrite 还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条 flushall 命令给删了,然后再将该 AOF 文件放回去,就可以通过恢复机制,自动恢复所有数据。

对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。

AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒 fsync 一次日志文件,当然,每秒一次 fsync,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低)

以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志/merge/回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。

12、请问C++的类和C里面的struct有什么区别?
整个空间按顺时针方向组织,0和2^32-1在零点中方向重合。

结构是一种将数据集合成组的方法,类是一种同时将函数和数据都集合成组的方法。结构和类在表面上的唯一区别是:类中的成员在默认情况下是私有的,而结构中的成员在默认情况下是公用的。

class foo
{
private:
int data1;
public:
void func();
};
可以写成:

class foo
{
int data1;
public:
void func();
};
因为在类中默认的是私有的,所以关键字private就可以不写了。

如果想用结构完成这个类所作的相同的事,就可以免去关键字public,并将公有成员放置在私有成员之前:

struct foo
{
void func();
private:
int data1;
};
篇幅有限,今天先分享到这里,需要更多大厂面试题可以加q裙812855908私聊管理免费领取
在这里插入图片描述
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_40989769/article/details/104991898