看完这道题的加密脚本,发现这道题给出的条件异乎寻常的多,但是我们不管他,需要什么就调用什么。我们先可以看到,两个n值公用了一个q,可以通过gcd函数很快找到q的值,就可以求出两个p的值,然后我们发现我们不知道e的值,然后e小于100000,又有关系式output=pow(294,e,n),可以通过爆破e的取值很快得到e,至此我们以及具有了解除flag的所有条件,不管其他条件直接写脚本,如下
// python2
from gmpy2 import *
from Crypto.Util.number import *
c1=12641635617803746150332232646354596292707861480200207537199141183624438303757120570096741248020236666965755798009656547738616399025300123043766255518596149348930444599820675230046423373053051631932557230849083426859490183732303751744004874183062594856870318614289991675980063548316499486908923209627563871554875612702079100567018698992935818206109087568166097392314105717555482926141030505639571708876213167112187962584484065321545727594135175369233925922507794999607323536976824183162923385005669930403448853465141405846835919842908469787547341752365471892495204307644586161393228776042015534147913888338316244169120
n1=13508774104460209743306714034546704137247627344981133461801953479736017021401725818808462898375994767375627749494839671944543822403059978073813122441407612530658168942987820256786583006947001711749230193542370570950705530167921702835627122401475251039000775017381633900222474727396823708695063136246115652622259769634591309421761269548260984426148824641285010730983215377509255011298737827621611158032976420011662547854515610597955628898073569684158225678333474543920326532893446849808112837476684390030976472053905069855522297850688026960701186543428139843783907624317274796926248829543413464754127208843070331063037
c2=979153370552535153498477459720877329811204688208387543826122582132404214848454954722487086658061408795223805022202997613522014736983452121073860054851302343517756732701026667062765906277626879215457936330799698812755973057557620930172778859116538571207100424990838508255127616637334499680058645411786925302368790414768248611809358160197554369255458675450109457987698749584630551177577492043403656419968285163536823819817573531356497236154342689914525321673807925458651854768512396355389740863270148775362744448115581639629326362342160548500035000156097215446881251055505465713854173913142040976382500435185442521721
n2=12806210903061368369054309575159360374022344774547459345216907128193957592938071815865954073287532545947370671838372144806539753829484356064919357285623305209600680570975224639214396805124350862772159272362778768036844634760917612708721787320159318432456050806227784435091161119982613987303255995543165395426658059462110056431392517548717447898084915167661172362984251201688639469652283452307712821398857016487590794996544468826705600332208535201443322267298747117528882985955375246424812616478327182399461709978893464093245135530135430007842223389360212803439850867615121148050034887767584693608776323252233254261047
q=gcd(n1,n2)
#print(q)
#99855353761764939308265951492116976798674681282941462516956577712943717850048051273358745095906207085170915794187749954588685850452162165059831749303473106541930948723000882713453679904525655327168665295207423257922666721077747911860159181041422993030618385436504858943615630219459262419715816361781062898911
output=381631268825806469518166370387352035475775677163615730759454343913563615970881967332407709901235637718936184198930226303761876517101208677107311006065728014220477966000620964056616058676999878976943319063836649085085377577273214792371548775204594097887078898598463892440141577974544939268247818937936607013100808169758675042264568547764031628431414727922168580998494695800403043312406643527637667466318473669542326169218665366423043579003388486634167642663495896607282155808331902351188500197960905672207046579647052764579411814305689137519860880916467272056778641442758940135016400808740387144508156358067955215018
for i in range(100000):
res=pow(294,i,n1)
if (res==output):
#print(i)
#52361
e=i
break
e=52361
p=n1//q
phi=(p-1)*(q-1)
d=invert(e,phi)
m=pow(c1,d,n1)
flag=long_to_bytes(m)
print(flag)
#BJD{p_is_common_divisor}