C++矩阵处理工具——Eigen

Eigen 是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件就能使用,非常方便。VS2012配置方法参见:http://blog.csdn.net/j_d_c/article/details/78899538

Eigen 矩阵定义


  
  
  1. #include <Eigen/Dense>
  2. Matrix< double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
  3. Matrix< double, 3, Dynamic> B; // Fixed rows, dynamic cols.
  4. Matrix< double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
  5. Matrix< double, 3, 3, RowMajor> E; // Row major; default is column-major.
  6. Matrix3f P, Q, R; // 3x3 float matrix.
  7. Vector3f x, y, z; // 3x1 float matrix.
  8. RowVector3f a, b, c; // 1x3 float matrix.
  9. VectorXd v; // Dynamic column vector of doubles
  10. // Eigen // Matlab // comments
  11. x.size() // length(x) // vector size
  12. C.rows() // size(C,1) // number of rows
  13. C.cols() // size(C,2) // number of columns
  14. x(i) // x(i+1) // Matlab is 1-based
  15. C(i,j) // C(i+1,j+1) //

 Eigen 基础使用


  
  
  1. // Basic usage
  2. // Eigen // Matlab // comments
  3. x.size() // length(x) // vector size
  4. C.rows() // size(C,1) // number of rows
  5. C.cols() // size(C,2) // number of columns
  6. x(i) // x(i+1) // Matlab is 1-based
  7. C(i, j) // C(i+1,j+1) //
  8. A.resize( 4, 4); // Runtime error if assertions are on.
  9. B.resize( 4, 9); // Runtime error if assertions are on.
  10. A.resize( 3, 3); // Ok; size didn't change.
  11. B.resize( 3, 9); // Ok; only dynamic cols changed.
  12. A << 1, 2, 3, // Initialize A. The elements can also be
  13. 4, 5, 6, // matrices, which are stacked along cols
  14. 7, 8, 9; // and then the rows are stacked.
  15. B << A, A, A; // B is three horizontally stacked A's.
  16. A.fill( 10); // Fill A with all 10's.

Eigen 特殊矩阵生成


  
  
  1. // Eigen // Matlab
  2. MatrixXd::Identity(rows,cols) // eye(rows,cols)
  3. C.setIdentity(rows,cols) // C = eye(rows,cols)
  4. MatrixXd::Zero(rows,cols) // zeros(rows,cols)
  5. C.setZero(rows,cols) // C = ones(rows,cols)
  6. MatrixXd::Ones(rows,cols) // ones(rows,cols)
  7. C.setOnes(rows,cols) // C = ones(rows,cols)
  8. MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
  9. C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
  10. VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
  11. v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'

Eigen 矩阵分块


  
  
  1. // Matrix slicing and blocks. All expressions listed here are read/write.
  2. // Templated size versions are faster. Note that Matlab is 1-based (a size N
  3. // vector is x(1)...x(N)).
  4. // Eigen // Matlab
  5. x.head(n) // x(1:n)
  6. x.head<n>() // x(1:n)
  7. x.tail(n) // x(end - n + 1: end)
  8. x.tail<n>() // x(end - n + 1: end)
  9. x.segment(i, n) // x(i+1 : i+n)
  10. x.segment<n>(i) // x(i+1 : i+n)
  11. P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
  12. P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
  13. P.row(i) // P(i+1, :)
  14. P.col(j) // P(:, j+1)
  15. P.leftCols<cols>() // P(:, 1:cols)
  16. P.leftCols(cols) // P(:, 1:cols)
  17. P.middleCols<cols>(j) // P(:, j+1:j+cols)
  18. P.middleCols(j, cols) // P(:, j+1:j+cols)
  19. P.rightCols<cols>() // P(:, end-cols+1:end)
  20. P.rightCols(cols) // P(:, end-cols+1:end)
  21. P.topRows<rows>() // P(1:rows, :)
  22. P.topRows(rows) // P(1:rows, :)
  23. P.middleRows<rows>(i) // P(i+1:i+rows, :)
  24. P.middleRows(i, rows) // P(i+1:i+rows, :)
  25. P.bottomRows<rows>() // P(end-rows+1:end, :)
  26. P.bottomRows(rows) // P(end-rows+1:end, :)
  27. P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
  28. P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
  29. P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
  30. P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
  31. P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
  32. P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
  33. P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
  34. P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)

Eigen 矩阵元素交换


  
  
  1. // Of particular note is Eigen's swap function which is highly optimized.
  2. // Eigen // Matlab
  3. R.row(i) = P.col(j); // R(i, :) = P(:, i)
  4. R.col(j1). swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])

Eigen 矩阵转置


  
  
  1. // Views, transpose, etc; all read-write except for .adjoint().
  2. // Eigen // Matlab
  3. R.adjoint() // R'
  4. R.transpose() // R.' or conj(R')
  5. R.diagonal() // diag(R)
  6. x.asDiagonal() // diag(x)
  7. R.transpose().colwise(). reverse(); // rot90(R)
  8. R.conjugate() // conj(R)

Eigen 矩阵乘积


  
  
  1. // All the same as Matlab, but matlab doesn't have *= style operators.
  2. // Matrix-vector. Matrix-matrix. Matrix-scalar.
  3. y = M*x; R = P*Q; R = P*s;
  4. a = b*M; R = P - Q; R = s*P;
  5. a *= M; R = P + Q; R = P/s;
  6. R *= Q; R = s*P;
  7. R += Q; R *= s;
  8. R -= Q; R /= s;

Eigen 矩阵单个元素操作


  
  
  1. // Vectorized operations on each element independently
  2. // Eigen // Matlab
  3. R = P.cwiseProduct(Q); // R = P .* Q
  4. R = P. array() * s. array(); // R = P .* s
  5. R = P.cwiseQuotient(Q); // R = P ./ Q
  6. R = P. array() / Q. array(); // R = P ./ Q
  7. R = P. array() + s. array(); // R = P + s
  8. R = P. array() - s. array(); // R = P - s
  9. R. array() += s; // R = R + s
  10. R. array() -= s; // R = R - s
  11. R. array() < Q. array(); // R < Q
  12. R. array() <= Q. array(); // R <= Q
  13. R.cwiseInverse(); // 1 ./ P
  14. R. array().inverse(); // 1 ./ P
  15. R. array(). sin() // sin(P)
  16. R. array(). cos() // cos(P)
  17. R. array(). pow(s) // P .^ s
  18. R. array().square() // P .^ 2
  19. R. array().cube() // P .^ 3
  20. R.cwiseSqrt() // sqrt(P)
  21. R. array(). sqrt() // sqrt(P)
  22. R. array(). exp() // exp(P)
  23. R. array(). log() // log(P)
  24. R.cwiseMax(P) // max(R, P)
  25. R. array().max(P. array()) // max(R, P)
  26. R.cwiseMin(P) // min(R, P)
  27. R. array().min(P. array()) // min(R, P)
  28. R.cwiseAbs() // abs(P)
  29. R. array(). abs() // abs(P)
  30. R.cwiseAbs2() // abs(P.^2)
  31. R. array().abs2() // abs(P.^2)
  32. (R. array() < s).select(P,Q); // (R < s ? P : Q)

Eigen 矩阵化简


  
  
  1. // Reductions.
  2. int r, c;
  3. // Eigen // Matlab
  4. R.minCoeff() // min(R(:))
  5. R.maxCoeff() // max(R(:))
  6. s = R.minCoeff(&r, & c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
  7. s = R.maxCoeff(&r, & c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
  8. R.sum() // sum(R(:))
  9. R.colwise().sum() // sum(R)
  10. R.rowwise().sum() // sum(R, 2) or sum(R')'
  11. R.prod() // prod(R(:))
  12. R.colwise().prod() // prod(R)
  13. R.rowwise().prod() // prod(R, 2) or prod(R')'
  14. R.trace() // trace(R)
  15. R.all() // all(R(:))
  16. R.colwise().all() // all(R)
  17. R.rowwise().all() // all(R, 2)
  18. R.any() // any(R(:))
  19. R.colwise().any() // any(R)
  20. R.rowwise().any() // any(R, 2)

Eigen 矩阵点乘


  
  
  1. // Dot products, norms, etc.
  2. // Eigen // Matlab
  3. x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
  4. x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
  5. x.dot(y) // dot(x, y)
  6. x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>

Eigen 矩阵类型转换


  
  
  1. //// Type conversion
  2. // Eigen // Matlab
  3. A.cast< double>(); // double(A)
  4. A.cast< float>(); // single(A)
  5. A.cast< int>(); // int32(A)
  6. A.real(); // real(A)
  7. A.imag(); // imag(A)
  8. // if the original type equals destination type, no work is done

Eigen 求解线性方程组 Ax = b


  
  
  1. // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
  2. x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
  3. x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
  4. x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
  5. x = A. qr() .solve(b)); // No pivoting. #include <Eigen/QR>
  6. x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
  7. // .ldlt() -> .matrixL() and .matrixD()
  8. // .llt() -> .matrixL()
  9. // .lu() -> .matrixL() and .matrixU()
  10. // . qr() -> .matrixQ() and .matrixR()
  11. // .svd() -> .matrixU(), .singularValues(), and .matrixV()

Eigen 矩阵特征值


  
  
  1. // Eigenvalue problems
  2. // Eigen // Matlab
  3. A.eigenvalues(); // eig(A);
  4. EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
  5. eig.eigenvalues(); // diag(val)
  6. eig.eigenvectors(); // vec
  7. // For self-adjoint matrices use SelfAdjointEigenSolver<>

参考文献

【1】http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

【2】http://blog.csdn.net/augusdi/article/details/12907341


转自:http://www.cnblogs.com/python27/p/EigenQuickRef.html


发布了3 篇原创文章 · 获赞 21 · 访问量 3万+

猜你喜欢

转载自blog.csdn.net/Crystal_YS/article/details/99470617