【模板】分治 FFT

题目大意:给定长度为 \(n - 1\) 的序列 \(g\),求 \(f\) 序列,其中 \(f\)
\[ f[i]=\sum_{j=1}^{i} f[i-j] g[j] \]

学会了分治 \(fft\)
发现这个式子中也含有卷积,但是这是一个递推式,即:\(f\) 数组是未知的。
考虑分治策略,即:假设已经算出区间 \([l, mid]\)\(f\) 值,现在要计算区间 \([mid + 1, r]\)\(f\)
考虑左半部分对右半部分的贡献,对于 \[x \in [mid + 1, r],\ contribution(left\rightarrow x) = \sum\limits_{i = l}^{mid}f(i)*g(x - i)\]
通过下标转换得:
\[ \begin{aligned} f(x) &=\sum_{i=l}^{mid} f(i) * g(x-i) \\ &=\sum_{i=0}^{mid-l} f(i+l) * g(x-l-i) \end{aligned} \]
换元得
\[ foo(i)=f(i+l), bar(i)=g(i) \]
式子变成了
\[ f(x)=foo(x-l)=\sum_{i=0}^{mid-l} A(i) * B(x-l-i) \]
即:卷积序列的第 \(x - l\) 项为 \(x\) 的贡献。

注意:对于 \(g\) 来说,下标不能移动到 \(0\) 开始,因为 \(f\) 数组本身下标就是从 \(0\) 开始的,这就意味着 \(g[0] = 0\),即:输入从 \(g[1]\) 开始。
另外,关于c11的 lambda 表达式,对于 [=] 来说,捕获到的变量均为其常量的副本,这个值仅仅由该变量的初始化决定,不会改变。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 998244353, rt = 3, irt = 332748118;
inline LL fpow(LL a, LL b) {
    LL ret = 1 % mod;
    for (; b; b >>= 1, a = a * a % mod) {
        if (b & 1) {
            ret = ret * a % mod;
        }
    }
    return ret;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    vector<LL> f(n), g(n);
    f[0] = 1;
    for (int i = 1; i < n; i++) {
        cin >> g[i];
    }
    int tot = 0, bit = 0;
    vector<int> rev;
    vector<LL> foo, bar;
    auto ntt = [&](vector<LL> &v, int opt) {
        for (int i = 0; i < tot; i++) {
            if (i < rev[i]) {
                swap(v[i], v[rev[i]]);
            }
        }
        for (int mid = 1; mid < tot; mid <<= 1) {
            LL wn = fpow(opt == 1 ? rt : irt, (mod - 1) / (mid << 1));
            for (int j = 0; j < tot; j += mid << 1) {
                LL w = 1;
                for (int k = 0; k < mid; k++) {
                    LL x = v[j + k], y = w * v[j + mid + k] % mod;
                    v[j + k] = (x + y) % mod, v[j + mid + k] = (x - y + mod) % mod;
                    w = w * wn % mod;
                }
            }
        }
        if (opt == -1) {
            LL itot = fpow(tot, mod - 2);
            for (int i = 0; i < tot; i++) {
                v[i] = v[i] * itot % mod;
            }
        }
    };
    function<void(int, int)> solve = [&](int l, int r) {
        if (l == r) {
            return;
        }
        int mid = l + r >> 1;
        solve(l, mid);
        int sz = r - l + 1;
        tot = 1, bit = 0;
        while (tot <= 2 * sz) {
            tot <<= 1;
            ++bit;
        }
        foo.resize(tot), bar.resize(tot), rev.resize(tot);
        for (int i = 0; i < tot; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1;
            foo[i] = bar[i] = 0;
        }
        for (int i = l; i <= mid; i++) {
            foo[i - l] = f[i];
        }
        for (int i = 0; i < sz; i++) {
            bar[i] = g[i];
        }
        ntt(foo, 1), ntt(bar, 1);
        for (int i = 0; i < tot; i++) {
            foo[i] = foo[i] * bar[i] % mod;
        }
        ntt(foo, -1);
        for (int i = mid + 1; i <= r; i++) {
            f[i] = (f[i] + foo[i - l]) % mod;
        }
        solve(mid + 1, r);
    };
    solve(0, n - 1);
    for (auto v : f) {
        cout << v << " ";
    }
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/wzj-xhjbk/p/11437578.html