imu单次测量离散积分代码

这里给出imu积分代码, 所算的tmp_Q, tmp_P, tmp_V在 /world 坐标系下

Eigen::Vector3d tmp_P;
Eigen::Quaterniond tmp_Q;
Eigen::Vector3d tmp_V;
Eigen::Vector3d tmp_Ba;//bias可以优化计算,也可以用工程化方法得出
Eigen::Vector3d tmp_Bg;

Eigen::Vector3d g; // /world
Eigen::Vector3d acc_0;//上一时刻的测量值
Eigen::Vector3d gyr_0;//上一时刻的测量值


//input:imu_msg ros采集

//output: tmp_Q, tmp_P, tmp_V

void predict(const sensor_msgs::ImuConstPtr &imu_msg)
{
    double t = imu_msg->header.stamp.toSec();
    double dt = t - latest_time;
    latest_time = t;

    double dx = imu_msg->linear_acceleration.x;
    double dy = imu_msg->linear_acceleration.y;
    double dz = imu_msg->linear_acceleration.z;
    Eigen::Vector3d linear_acceleration{dx, dy, dz};

    double rx = imu_msg->angular_velocity.x;
    double ry = imu_msg->angular_velocity.y;
    double rz = imu_msg->angular_velocity.z;
    Eigen::Vector3d angular_velocity{rx, ry, rz};

    //! 这个地方的tmp_Q是local-->world
    Eigen::Vector3d un_acc_0 = tmp_Q * (acc_0 - tmp_Ba - tmp_Q.inverse() * g);

    Eigen::Vector3d un_gyr = 0.5 * (gyr_0 + angular_velocity) - tmp_Bg;
    tmp_Q = tmp_Q * deltaQ(un_gyr * dt);

    Eigen::Vector3d un_acc_1 = tmp_Q * (linear_acceleration - tmp_Ba - tmp_Q.inverse() * g);

    Eigen::Vector3d un_acc = 0.5 * (un_acc_0 + un_acc_1);

    tmp_P = tmp_P + dt * tmp_V + 0.5 * dt * dt * un_acc;
    tmp_V = tmp_V + dt * un_acc;

    acc_0 = linear_acceleration;
    gyr_0 = angular_velocity;
}


    template <typename Derived>
    static Eigen::Quaternion<typename Derived::Scalar> deltaQ(const Eigen::MatrixBase<Derived> &theta)
    {
        typedef typename Derived::Scalar Scalar_t;

        Eigen::Quaternion<Scalar_t> dq;
        Eigen::Matrix<Scalar_t, 3, 1> half_theta = theta;
        half_theta /= static_cast<Scalar_t>(2.0);
        dq.w() = static_cast<Scalar_t>(1.0);
        dq.x() = half_theta.x();
        dq.y() = half_theta.y();
        dq.z() = half_theta.z();
        return dq;
    }

猜你喜欢

转载自blog.csdn.net/Yang_He0105/article/details/88363835