Machine Learning(@Andrew Ng) WEEK 5 Exercise

Spend two days in these code,very stupid.
Note the important part ‘%must set rows 1 = 0,important!!! ‘.
The code about gradient descent should be computed by matrix.
It will be very quickly in running.

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
%Theta1 = (25*401)
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));
%Theta2 = (10*26)
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);

% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%

% 1.3 feedforeward and cost function
%y_ = zeros(m,num_labels);   %onehot y_ = (5000*10)
%for i=1:m
%  y_(i,y(i))=1;
%endfor

y_ = eye(num_labels)(y,:); 

X = [ones(m,1) X];             %X = (5000*401)
z2 = X * Theta1';              %z2 = (5000*25)
a2 = sigmoid(z2);              %a2 = (5000*25)
a2_addone = [ones(m,1) a2];    %a2_addone =(5000*26)

z3 = a2_addone * Theta2';      %z3= (5000*10)
a3 = sigmoid(z3);              %a3= (5000*10)
%temp=(5000*10)
temp = (-1*y_).*log(a3)  - (1-y_).*log(1-a3);  %����ʹ�õ��ˣ�

J = sum(sum(temp))/m;

% 1.4 Regularized Cost Function
n1 = size(Theta1,2);
t1 = Theta1(:,2:n1);   %t1 = (5000*400)
n2 = size(Theta2,2);
t2 = Theta2(:,2:n2);
J = J + (lambda/(2*m))*(sum(sum(t1.^2))+sum(sum(t2.^2)));


% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.

%Theta1 = (25*401)
%Theta2 = (10*26)
DELTA_1 = zeros(hidden_layer_size,(input_layer_size+1));  %(25*401)
DELTA_2 = zeros(num_labels,(hidden_layer_size+1));        %(10*26)
Theta1_regulization = Theta1*lambda/m;  %(25*401)
Theta1_regulization(:,1) = 0;  % columns 1 need to set zeros.
Theta2_regulization = Theta2*lambda/m;  %(10*26)
Theta2_regulization(:,1) = 0;  % columns 1 need to set zeros.

for t = 1:m
  a_1 = X(t,:);       %a_1 = (1*401)
  z_2 = Theta1*a_1';  %z_2 = (25*1)
  a_2 = sigmoid(z_2); 
  a_2 = [1;a_2];      %a_2 = (26*1)

  z_3 = Theta2 * a_2; %z_3 = (10*1)
  a_3 = sigmoid(z_3); %a_3 = (10*1)
  delta_3 = a_3 - y_(t,:)';    %delta_3 = (10*1)
  delta_2 = (Theta2'*delta_3).* sigmoidGradient([1;z_2]); %delta_2 = (26*1)
  delta_2(1,:)=1;     %must set rows 1 = 0,important!!!


  %delta_2(:,2:end) = (25*1)
  DELTA_1 = DELTA_1 + delta_2(2:end) * a_1 ; %(25*401)
  %a_2(2:end) = (25*1)
  DELTA_2 = DELTA_2 + delta_3 * a_2'; %(10*26)

endfor

  Theta1_grad = DELTA_1/m + Theta1_regulization;
  Theta2_grad = DELTA_2/m + Theta2_regulization;

  grad = [Theta1_grad(:);Theta2_grad(:)];



%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%
% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];


end

猜你喜欢

转载自blog.csdn.net/weixin_40920228/article/details/80503218