comparação de desempenho de operador módulo e bit a bit E

Sr. KA diz:

Eu estou trabalhando para determinar se um inteiro de 32 bits é par ou ímpar. Tenho a configuração 2 se aproxima:

abordagem módulo (%)

int r = (i % 2);

bit a bit (&) abordagem

int r = (i & 0x1);

Ambas as abordagens funcionam com sucesso. Então eu corro cada linha para 15000 vezes para o desempenho no teste.

Resultado:

modulo (%) abordagem ( código fonte )

141.5801887ns médios | 270.0700275ns SD

bit a bit (&) abordagem ( código fonte )

141.2504ns médios | 193.6351007ns SD

perguntas :

Por que é bit a bit (&) mais estável do que a divisão (%)?

Does JVM modulo optimize (%) utilizando E (&) de acordo com aqui ?

St.Antario:

Vamos tentar reproduzir com JMH.

@Benchmark
@Measurement(timeUnit = TimeUnit.NANOSECONDS)
@BenchmarkMode(Mode.AverageTime)
public int first() throws IOException {
    return i % 2;
}

@Benchmark
@Measurement(timeUnit = TimeUnit.NANOSECONDS)
@BenchmarkMode(Mode.AverageTime)
public int second() throws IOException {
    return i & 0x1;
}

Ok, é reproduzível. O firsté um pouco mais lento do que o second. Agora vamos descobrir o porquê. Executá-lo com -prof perfnorm:

Benchmark                                 Mode  Cnt   Score    Error  Units
MyBenchmark.first                         avgt   50   2.674 ±  0.028  ns/op
MyBenchmark.first:CPI                     avgt   10   0.301 ±  0.002   #/op
MyBenchmark.first:L1-dcache-load-misses   avgt   10   0.001 ±  0.001   #/op
MyBenchmark.first:L1-dcache-loads         avgt   10  11.011 ±  0.146   #/op
MyBenchmark.first:L1-dcache-stores        avgt   10   3.011 ±  0.034   #/op
MyBenchmark.first:L1-icache-load-misses   avgt   10  ≈ 10⁻³            #/op
MyBenchmark.first:LLC-load-misses         avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.first:LLC-loads               avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.first:LLC-store-misses        avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.first:LLC-stores              avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.first:branch-misses           avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.first:branches                avgt   10   4.006 ±  0.054   #/op
MyBenchmark.first:cycles                  avgt   10   9.322 ±  0.113   #/op
MyBenchmark.first:dTLB-load-misses        avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.first:dTLB-loads              avgt   10  10.939 ±  0.175   #/op
MyBenchmark.first:dTLB-store-misses       avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.first:dTLB-stores             avgt   10   2.991 ±  0.045   #/op
MyBenchmark.first:iTLB-load-misses        avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.first:iTLB-loads              avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.first:instructions            avgt   10  30.991 ±  0.427   #/op
MyBenchmark.second                        avgt   50   2.263 ±  0.015  ns/op
MyBenchmark.second:CPI                    avgt   10   0.320 ±  0.001   #/op
MyBenchmark.second:L1-dcache-load-misses  avgt   10   0.001 ±  0.001   #/op
MyBenchmark.second:L1-dcache-loads        avgt   10  11.045 ±  0.152   #/op
MyBenchmark.second:L1-dcache-stores       avgt   10   3.014 ±  0.032   #/op
MyBenchmark.second:L1-icache-load-misses  avgt   10  ≈ 10⁻³            #/op
MyBenchmark.second:LLC-load-misses        avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.second:LLC-loads              avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.second:LLC-store-misses       avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.second:LLC-stores             avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.second:branch-misses          avgt   10  ≈ 10⁻⁴            #/op
MyBenchmark.second:branches               avgt   10   4.014 ±  0.045   #/op
MyBenchmark.second:cycles                 avgt   10   8.024 ±  0.098   #/op
MyBenchmark.second:dTLB-load-misses       avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.second:dTLB-loads             avgt   10  10.989 ±  0.161   #/op
MyBenchmark.second:dTLB-store-misses      avgt   10  ≈ 10⁻⁶            #/op
MyBenchmark.second:dTLB-stores            avgt   10   3.004 ±  0.042   #/op
MyBenchmark.second:iTLB-load-misses       avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.second:iTLB-loads             avgt   10  ≈ 10⁻⁵            #/op
MyBenchmark.second:instructions           avgt   10  25.076 ±  0.296   #/op

Observe a diferença de ciclos e instruções. E agora que é meio óbvio. A firstse importa com o sinal, mas o secondnão (apenas bit a bit e). Para certificar-se esta é a razão dar uma olhada no fragmento de montagem:

primeiro:

0x00007f91111f8355: mov     0xc(%r10),%r11d   ;*getfield i
0x00007f91111f8359: mov     %r11d,%edx
0x00007f91111f835c: and     $0x1,%edx
0x00007f91111f835f: mov     %edx,%r10d
0x00007f6bd120a6e2: neg     %r10d
0x00007f6bd120a6e5: test    %r11d,%r11d
0x00007f6bd120a6e8: cmovl   %r10d,%edx       

segundo:

0x00007ff36cbda580: mov     $0x1,%edx
0x00007ff36cbda585: mov     0x40(%rsp),%r10
0x00007ff36cbda58a: and     0xc(%r10),%edx  

Acho que você gosta

Origin http://43.154.161.224:23101/article/api/json?id=184809&siteId=1
Recomendado
Clasificación