マスターへの古典的なフレームデザインパターンJAVAデザインパターンの23種類の概要

デザインパターン(デザインパターン)は、コードの設計経験の概要をカタログした後、ほとんどの人に知られている、使用を繰り返すように設定されています。コードの信頼性を確保するために、他人を理解するために、コードをより簡単に、再利用可能なコードにデザインパターンを使用してください。疑いの余地はデザインパターンが同じのレンガの石造りの建物の一部のように、ソフトウェア工学の基礎である、他の人のためのWin-Winのある、デザインパターンはコードにコンパイル本当のエンジニアリング作るデザインモードのシステムでは他に、あります。デザインパターンの事業合理的な使用は、各パターンに対応する私たちの周り絶えず繰り返し発生する問題について説明し、問題の核心両方に対応する今、原理的には多くの問題に最適なソリューション、各モードすることができそれが広く使用することができるということである原因ソリューション、。

分類、デザインパターン

三つのカテゴリーに全体的に、デザインパターン:

Factory Methodパターン、Abstract Factoryパターン、シングルトン、Builderパターン、プロトタイプモデル:スキーマ、5つのカテゴリーの合計を作成します。

構造モデル、7種類の合計:アダプタモード、装飾的なモード、プロキシモード、外観モード、ブリッジモード、組み合わせモード、フライ級。

行動パターン、11種類の合計:Strategyパターン、モードを説明するためのテンプレートメソッドパターン、オブザーバーモード、イテレータパターン、責任のチェーン・モード、コマンドモード、メモモード状態モード、ビジターパターン、仲介モデル。

並行処理パターンとスレッドプールモード:実際には、2つのタイプがあります。絵で全体を記述するために:


二、Javaのデザインパターン23

当初から、その特徴的な原則とデザインパターンと組み合わせて、このようなアプリケーションシナリオとして23のデザインパターン、ののJava例我々詳しく概念を分析しました。

1、ファクトリメソッドモデル(ファクトリメソッド)

Factory Methodパターンは3種類に分けられます。

11、通常の工場モデルは、インスタンスを作成したのと同じインターフェイスクラスを達成するために、ファクトリクラスを構築することです。まず、図を見てください:



たとえば、次のように:(私たちは、電子メールやSMSを送信する例を与えます)

まず、両者の間の共通のインタフェースを作成します。

  1. パブリックインターフェースセンダ{  

  2.     公共ボイド送信();  

  3. }  

第二に、実装クラスを作成します。

  1. パブリッククラスMailSenderのは、{送信者を実装します  

  2.     @オーバーライド  

  3.     公共ボイド送信(){  

  4.         System.out.println(“this is mailsender!”);  

  5.     }  

  6. }  

  7. public class SmsSender implements Sender {  

  8.   

  9.     @Override  

  10.     public void Send() {  

  11.         System.out.println(“this is sms sender!”);  

  12.     }  

  13. }  

最后,建工厂类:

  1. public class SendFactory {  

  2.   

  3.     public Sender produce(String type) {  

  4.         if (“mail”.equals(type)) {  

  5.             return new MailSender();  

  6.         } else if (“sms”.equals(type)) {  

  7.             return new SmsSender();  

  8.         } else {  

  9.             System.out.println(“请输入正确的类型!”);  

  10.             return null;  

  11.         }  

  12.     }  

  13. }  

我们来测试下:

  1. public class FactoryTest {  

  2.   

  3.     public static void main(String[] args) {  

  4.         SendFactory factory = new SendFactory();  

  5.         Sender sender = factory.produce(“sms”);  

  6.         sender.Send();  

  7.     }  

  8. }  

输出:this is sms sender!

22、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

::__IHACKLOG_REMOTE_IMAGE_AUTODOWN_BLOCK__::2

将上面的代码做下修改,改动下SendFactory类就行,如下:

public class SendFactory {  

   public Sender produceMail(){  

  1.         return new MailSender();  

  2.     }  

  3.       

  4.     public Sender produceSms(){  

  5.         return new SmsSender();  

  6.     }  

  7. }  

测试类如下:

  1. public class FactoryTest {  

  2.   

  3.     public static void main(String[] args) {  

  4.         SendFactory factory = new SendFactory();  

  5.         Sender sender = factory.produceMail();  

  6.         sender.Send();  

  7.     }  

  8. }  

输出:this is mailsender!

33、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

  1. public class SendFactory {  

  2.       

  3.     public static Sender produceMail(){  

  4.         return new MailSender();  

  5.     }  

  6.       

  7.     public static Sender produceSms(){  

  8.         return new SmsSender();  

  9.     }  

  10. }  

  11. public class FactoryTest {  

  12.   

  13.     public static void main(String[] args) {      

  14.         Sender sender = SendFactory.produceMail();  

  15.         sender.Send();  

  16.     }  

  17. }  

输出:this is mailsender!

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传 入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

2、抽象工厂模式(Abstract Factory)

工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑, 有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象 工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。



请看例子:

  1. public interface Sender {  

  2.     public void Send();  

  3. }  

两个实现类:

  1. public class MailSender implements Sender {  

  2.     @Override  

  3.     public void Send() {  

  4.         System.out.println(“this is mailsender!”);  

  5.     }  

  6. }  

  7. public class SmsSender implements Sender {  

  8.   

  9.     @Override  

  10.     public void Send() {  

  11.         System.out.println(“this is sms sender!”);  

  12.     }  

  13. }  

两个工厂类:

  1. public class SendMailFactory implements Provider {  

  2.       

  3.     @Override  

  4.     public Sender produce(){  

  5.         return new MailSender();  

  6.     }  

  7. }  

  8. public class SendSmsFactory implements Provider{  

  9.   

  10.     @Override  

  11.     public Sender produce() {  

  12.         return new SmsSender();  

  13.     }  

  14. }  

在提供一个接口:

  1. public interface Provider {  

  2.     public Sender produce();  

  3. }  

测试类:

  1. public class Test {  

  2.   

  3.     public static void main(String[] args) {  

  4.         Provider provider = new SendMailFactory();  

  5.         Sender sender = provider.produce();  

  6.         sender.Send();  

  7.     }  

  8. }  

其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

3、单例模式(Singleton

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

首先我们写一个简单的单例类:

  1. public class Singleton {  

  2.   

  3.     /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */  

  4.     private static Singleton instance = null;  

  5.   

  6.     /* 私有构造方法,防止被实例化 */  

  7.     private Singleton() {  

  8.     }  

  9.   

  10.     /* 静态工程方法,创建实例 */  

  11.     public static Singleton getInstance() {  

  12.         if (instance == null) {  

  13.             instance = new Singleton();  

  14.         }  

  15.         return instance;  

  16.     }  

  17.   

  18.     /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  

  19.     public Object readResolve() {  

  20.         return instance;  

  21.     }  

  22. }  

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

  1. public static synchronized Singleton getInstance() {  

  2.         if (instance == null) {  

  3.             instance = new Singleton();  

  4.         }  

  5.         return instance;  

  6.     }  

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

  1. public static Singleton getInstance() {  

  2.         if (instance == null) {  

  3.             synchronized (instance) {  

  4.                 if (instance == null) {  

  5.                     instance = new Singleton();  

  6.                 }  

  7.             }  

  8.         }  

  9.         return instance;  

  10.     }  

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为 null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是 分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间, 然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

a>A、B线程同时进入了第一个if判断

b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通

d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:


おすすめ

転載: blog.51cto.com/14550123/2438992