通訳CVPR 2019紙|図フィルタリング半教師あり学習法は、高い使用率のラベルを持っています

高いろ過効率、半教師付き学習法を有する図タグ

13894005-0a22b9835bcbebbe.jpg

半教師あり学習紙がCVPR2019総会を受信する方向のこの記事の解釈は、こちらをクリックしてくださいオリジナルのarXivのを見るためにジャンプします。AI YanxisheライブCVPRの論文は、会議を共有する前に、呉暁明先生共著者が共有するサイトを作った、あなたは、ビデオの再生にジャンプする最初にすることができます1時59分23秒説明呉に耳を傾ける場面で。オリジナルの紙に基づいており、記事の教師のPPTの内容を再コーミングと解釈し、詳細の中程度のレベルは、我々は手助けをしたいです。

「ラベル・効率的な半教師グラフ学習フィルタリングを経由して、」記事は半教師あり学習の問題を研究し、著者は、マップのフィルタリングに基づく半教師付き学習の枠組みを提案し、半教師付き分類LPの2つの典型的なビューのフレームワークを使用してGCNが向上し、同時に接続情報の図ノードの特徴情報を利用するだけでなく、新たな方法ではなく、ラベルの効率を改善する、提案された方法は、すべての実験データセットが改善され、最良の結果を達成しています。フィルタの景色を著者統一されたフレームワークは完全に別のLPを検索し、GCN、ビューのその「ローパスフィルタ」ポイントが簡潔な方法で認識の研究者を増やし、これらの2つの方法が実際に動作する理由を説明しました知識レベル。次のディレクトリは、以下に配置されている、あなたは彼らの懸念の一部に迅速にジャンプするリンクをクリックすることができます。

1.予選

1.1対象問題

1.2スペクトル分析チャート

図をフィルタリング1.3畳み込み。

1.4フィルタリング及び半教師付き分類図。

2.動機

3.メソッド

3.1図LPフィルタ

1)オリジナルのLPアルゴリズム

図の視点2)LPフィルタ。

3)GLP一般ラベル伝搬

3.2フィルタリングと図GCN

1)オリジナルGCN

2)GCN視点図フィルタ

3)に加えて、図フィルタGCN

4.実装と検証

4.1平滑化強度及び演算性能

半教師付き分類タスク4.2の比較

4.3ゼロショット半教師回帰比較タスク

5.まとめ

1.予選

1.1対象問題

グラフG所与図すなわち半教師付き分類、および信号行列Xとノードラベル行列Y(疎行列、ノードラベルの一部のみ)必要な出力ラベル行列Y「(各ノード特定のカテゴリ)、次の例図。 :

13894005-110b97c99f96f64d.jpg

マークされたノード、標識されていないノードとしてノード2があることをグラフで1,3,4ノード。各ノードは特徴ベクトルX_Iに対応X I、半教師付き分類機能は、非標識のカテゴリノード(ノード2)を予測するためにノードを標識するすべてのノードのオブジェクトとラベルの使用です。

確率が高いと同じクラスであり、それらはカテゴリの別のノードにノードの1つに与えられるノードとの間の類似性が高い分布ノードラベルとの間の類似性に基づいて、図の半教師付き分類、、。唯一の図の接​​続の構造の類似性によって反映される暗黙式ノードは、ノードはまた、これだけ接続情報及び特性情報は、ノード特徴の類似性のより良い利用を得るために、それによってラベル割り当ての精度を向上させる機能であってもよいです。

1.2スペクトル分析チャート

有向グラフラプラシアン行列Lなく使用することができるLの分解を特徴と表すの正規直交固有ベクトルの組のために得ることができる(と正規直交基底直交行列を構成してもよい)、各特徴ベクトルの\ phi_i 、Φ 私は対応してい固有値\ lambda_i 、λ I図の正規直交基底と呼ばれる信号処理の図フィールド、フーリエ基(フーリエベース)のグループの信号特性値の代表に対応する周波数(周波数)式の下に定義された関連:

13894005-7e8a138027f6081c.jpg

Wは、隣接行列であり、DはPhiΦL個の固有ベクトルは直交行列の列に配列されている\行列であり、\LambdaΛ特徴ベクトルは、L対角行列で構成されています。ラプラス行列が定義種々の、唯一の最も原始的な種類の上記第一式の定義を有することは注目に値します。次のように別のラプラス正規化と正規化対称ラプラシアンに定義されます。

13894005-a4dd903ec494e0f1.jpg

它们的区别主要在“对称”和“归一化”上,差别并不是很大,为了避免读者混淆所以此处先将它们都列举出来。图信号的频率反映了它的变化程度,低频的信号较平滑,相邻节点的信号值相似度高,而高频信号的变化较为剧烈,相邻节点的信号值可能差异较大。频谱分析的目的是将复杂信号分解成某种相对简单的基本信号的线性组合,通过研究这些简单信号的性质及它们在原始信号中的占比就能推测出原始信号的性质,这是化繁为简、化大为小的解构主义哲学的体现。例如一维傅里叶变换将一维信号分解成复指数函数的线性组合(离散信号)或积分求和(连续信号)。而常用的二维图像DCT变换将图片分解成余弦基信号的线性组合。

类似的,在将此概念推广到图信号处理领域,基信号变成了拉普拉斯矩阵的特征向量\phi_iϕi​​,而任意的图信号都可以被表示成\phi_iϕi​​的线性组合(标准正交基的线性组合可以表示n维空间中的所有向量)。

13894005-cee71a3547a39cad.jpg

图信号(graph signal)就是在图上定义的信号,图中的每一个节点都对应着一个实数值,可以用向量f \in R^{n\times 1}fRn×1​​表示一个图信号,其中n代表图节点的个数。多变量的图信号或者说多维的图信号可以用矩阵X \in R^{n\times m}XRn×m​​表示,此时每个图节点都对应一个长度为m的一维向量,该向量表示节点的特征。

1.3 图卷积滤波

所谓“滤波”是指过滤掉信号频谱中的特定成分,比如说常见的低通滤波就是指尽量保留信号的低频成分并过滤掉其高频成分。可以将滤波看做一个信号映射函数,该函数接收一个原始信号并输出过滤后的信号。滤波一般通过在原始信号上乘以滤波器实现,论文中定义了如下的图卷积滤波器

13894005-45b8f7ac36eef1e0.jpg

其中,函数p(\lambda_i)p(λi​​)被称为频率响应函数。使用此卷积过滤器对图信号f进行卷积可得:

13894005-5fbe0d3911075f8a.png

可以发现,滤波信号\bar f​f​¯​​中每一个基信号\phi_iϕi​​的比例c_ici​​都被函数p(\lambda_i)p(λi​​)缩放了。频率响应函数控制着滤波器对不同频率的基信号的响应,我们可以设计不同性质的频率响应函数满足不同场景的滤波需求。

1.4 图滤波与半监督分类

图半监督分类的基本假设是“相邻节点的标签相似”,这意味着我们希望有标记节点周围的图信号是平滑的、低频的,我们期望学到低频的表示信号,所以应该使用具有低通性质的滤波器和频率响应函数。作者就是用这种“低通图滤波”的视角统一解释了LP和GCN并基于此做出了有效的改进。

2. 动机

经典的Label Propagation算法只能利用图的结构信息,无法利用节点的特征。而新兴的Graph Convolution Network需要大量的Label用来训练和验证,但半监督学习任务的标签数量本来就少,所以GCN在标签数据较少的情况下可能难以奏效,因为它的标签利用效率是低下的。为了解决LP不能利用节点特征的问题,作者对其做出了改进并提出GLP。为了解决GCN模型复杂度较高且标签利用率较低的问题,作者对其进行了改并进提出IGCN。两种方法都是在图滤波的框架下提出,在理论上可以被统一的解释,在实践中也都有很好的效果。

3. 方法介绍

3.1 图滤波与LP

1) 原始LP算法

标签传播算法(Lable Propagation)简称LP,是一种简单有效的图半监督学习方法,在科研和工业实践中均被广泛应用。LP的目的是得到一个能满足真实标签矩阵Y同时在图上又足够平滑的预测/嵌入矩阵Z。LP模型的优化目标如下:

13894005-0cd2f9732722adb7.png

其中矩阵Z \in R^{n\times l}ZRn×l​​,其中ll表示类别的个数,矩阵的每一行表示一个节点的多类别预测概率(也可以视为节点嵌入向量)。优化目标的第一项约束预测矩阵与真实标签矩阵的误差尽可能小,第二项约束目标矩阵ZZ在图上的变换尽量平滑,被称为拉普拉斯正则项,正则的力度用参数\alphaα控制。这是一个无约束的二次优化问题,有解析解:

13894005-e4fe6b1818f9dacd.jpg

得到ZZ之后,可以直接选择每一行中取值最大的一类作为节点的类别,或者在此之前多做一步列归一化的操作。

2) 图滤波视角下的LP

若从图滤波的视角看,可将LP算法分成3大部分:

13894005-b8add58273902110.jpg

满足上文中卷积滤波器的定义,被称为自回归(Auto-Regressive)滤波器,其激活响应函数为:

13894005-e16977fafa410927.jpg

从下图来看,自回归滤波器显然是低通的、抑制高频的,其平滑力度随\alphaα的增大而增大。

13894005-07a5cba3dcc5499b.jpg

3) 推广的标签传播算法GLP

作者将图滤波视角下LP的三大组件进行了推广泛化,提出了广义标签传播算法(Generalized Label Propagation)GLP。具体推广如下:

1.图信号:使用所有节点的特征向量组成的特征矩阵X作为输入信号

2.滤波器:可以是任意满足定义的低通图卷积滤波器

3.分类器:可以是在带标签节点的嵌入表征上训练得到的任意分类器

这个推广非常自然,也很容易理解,最关键的步骤是对节点特征矩阵进行低通图滤波。这一步可以视为特征提取过程,作者利用低通滤波器提取出了更平滑的数据表征,并且同时考虑了图的连接信息和节点特征信息,弥补了原始LP无法利用节点特征的缺陷。而滤波器与分类器的推广泛化则大大提高了算法的灵活性,使GLP很容易就能整合到不同的问题领域。

3.2 图滤波与GCN

1) 原始GCN

GCN是一种在频谱上定义的图卷积网络,它简单有效,在半监督分类问题上有优异的表现。GCN首先对邻接矩阵加入自连接并进行对称归一化得到重归一化矩阵\tilde W_s​W​~​​​s​​:

13894005-5d56e0976700ac01.jpg

第一个式子相当于引入了各节点到自身的连接,第二个式子中\tilde W_s​W​~​​​s​​是矩阵\tilde W​W​~​​的对称归一化拉普拉斯矩阵。基于\tilde W_s​W​~​​​s​​,原文作者定义GCN的层级传播过程为:

13894005-d761cd197cf532db.jpg

其中H^{(t)}H​(t)​​表示第t层的输入,\Theta^{(t)}Θ​(t)​​是第t层的待学习参数,\sigmaσ可以是神经网络中的各种激活函数。

一层图卷积先对输入信号左乘以重归一化矩阵\tilde W_s​W​~​​​s​​,然后再使用参数矩阵\ThetaΘ进行投射变换,最后使用激活函数进行非线性变换。堆叠多个图卷积层后最后使用softmax激活函数进行分类,比如双层图卷积:

13894005-70ceaa917fa0257c.png

可以使用反向传播算法对此GCN进行训练得到最终模型。

2) 图滤波视角下的GCN

从双层GCN的式子中可以看到,GCN其实就是不断地重复着1) 左乘 2)投射变换 3)激活变换 三个步骤。其中投射变换和激活变换是普通神经网络中的通用操作,而“左乘”重归一化矩阵可以看做对输入信号进行图滤波,因为重归一化矩阵满足:

13894005-16b9a74a180b030b.jpg

其中\tilde L​L​~​​为矩阵\tilde W​W​~​​的对称归一化拉普拉斯。滤波器\tilde W_s​W​~​​​s​​对应的频率响应函数为:

13894005-d1d3e0a1b8589cb9.jpg

如果我们将双层GCN中3个操作的顺序稍微替换一下,将两个图滤波步骤全部放在第一层,比如:

13894005-7c862da713716afd.png
13894005-8c1b644cb5a9ad48.png

从下图可以看到,该滤波器在[0,1]区间内是低通滤波器,且其低通程度随k的增大而增大。所以多层GCN的滤波器比单层GCN的滤波器更加低通,平滑力度更大。

13894005-639a34793182c227.jpg

在图滤波的视角下,我们可以用频率响应函数的性质来解释GCN 1) 使用对称化归一化拉普拉斯定义 2) 使用重归一化技巧(添加自连接) 的原因。采用对称归一化拉普拉斯矩阵可以将特征值的取值范围限制在[0, 2]之间,而重归一化技巧可以将特征值的取值范围进一步缩小,这促使滤波器越来越接近于完全低通。 作者在Cora数据集上对重归一化前后GCN的频率响应函数进行了可视化,如下图所示:

13894005-843907b1597ac2ba.jpg

可以看到,无论是单层还是双层,重归一化后的拉普拉斯矩阵的特征值都被限制到了1.5以内,验证了作者们对于重归一化技巧在应用中奏效的解释。事实上,可以证明重归一化技巧能使拉普拉斯矩阵的特征值范围压缩到区间:

13894005-2fc54a85d6905ef2.png

其中d_mdm​​表示图中节点度(Degree)的最大值,\lambda_mλm​​为对称归一化拉普拉斯矩阵的最大特征值。

3) 图滤波增强版GCN

虽然堆叠多个GCN层可以增加滤波的平滑力度,但也会引入更多待学习参数,这使得网络需要更多的数据训练以避免过拟合。为了解决这个问题作者提出了IGCN(Improved Graph Convolutional Network)。IGCN将GCN中的重归一化矩阵全部替换成了重归一化滤波器,即:

13894005-eb001f549e8c5e02.png

作者称滤波器:

13894005-3aed980e1c8434bf.jpg

为重归一化(Renormalization)滤波器,其频率响应函数为:

13894005-de854b9d708c0385.jpg

显然,IGCN可以通过调节k来直接控制滤波的平滑力度且不会引入额外的待学习参数,这可以使模型维持在浅层水平,无需过多数据即可达到理想的训练效果,提高了模型的标签利用效率。

4. 实现与验证

4.1 平滑力度与计算性能

无论是GLP还是IGCN,都可以通过控制参数或者参数k来控制滤波的平滑力度,那么应该如何根据应用场景调整平滑力度呢?作者指出数据集的标签率是调整平滑力度的一个关键参考,当标签率较小时平滑力度应该较大,以使较远的无标签节点也能与有标签节点获得相似的特征表示;当标签率较大时,平滑的力度应该较小,标签的传播范围不宜太远,以保持特征的多样性。作者使用不同平滑力度的RNM滤波器在Cora数据集上做了实验并做了t-SNE可视化,其结果如下:

13894005-740feb6f35caa7b0.jpg

可以发现,随着平滑的力度增大,滤波结果的类簇变得越来越紧凑,簇间距越来越大,分类边界也变得更加清晰,此时只需要少量的标签便可以进行分类,这就直观地解释了平滑力度设置与数据标签率之间的关系。

除了平滑力度外,文中还讨论了两种滤波器的计算性能。由于AR滤波器涉及到了运算代价很高的矩阵求逆运算,作者使用k阶展开多项式来进行近似以降低计算复杂度。对于k阶RNM滤波器,可以利用拉普拉斯矩阵在实际应用中往往是稀疏的特性来进行计算加速。作者在文中分析了两种滤波器在理论上的计算复杂度,旨在说明其实用性。

4.2 半监督分类任务实验对比

作者在4个引文网络数据集和1个知识图谱数据集上进行了半监督分类任务的实验,并与许多出色的模型进行对比,包括Youshua Bengio团队的GAT。几个数据集的节点规模、类别数量以及特征数量均不相同,这样的实验安排能够衡量模型在各种场景下的表现,比较全面。各数据集的统计指标如下表:

13894005-0afb8d3c30941c7c.jpg

为了方便了解数据的量级,我使用k(千)和w(万)对数据进行了简化表示。除了选用不同规模的数据集,作者还为数据集设置了不同的标签率以观察平滑力度与标签率之间的关系,其设定如下表:

13894005-7e1f245d7897f706.jpg

各模型在各数据集上的分类正确率如下:

13894005-5467f8f29719c85a.jpg

实验结果显示,经图滤波改造的方法在所有场景下的表现均优于其他对比模型。但从运行时间上来看,GLP与IGCN的耗时显然要更多一些,在规模较大的NELL数据集上最为明显,不过总的来说是在可接受范围内的。

4.3 Zero-Shot半监督回归任务实验对比

除了分类,GLP和IGCN还可以用于半监督回归。2018年CVPR的一篇论文使用GCN做了0样本图片识别(Zero-Shot image recognition)任务,即只使用类别的文字描述和类别之间的关系为没有任何训练样本的类别(Unseen Class)学习一个视觉分类器。该文在给定一个已知类别的分类器的前提下,使用每个类别的文字描述嵌入特征和类别关系作为输入,并以已知分类器最后一层的权重为回归目标训练了一个6层的GCN,然后将GCN的输出作为未知类别的分类器最后一层的权重,并使用新的权重组成分类器对所有类别进行预测。该文将Zero-Shot学习巧妙的转化成了图半监督回归问题,这使许多半监督回归方法都能应用于0样本学习任务,该文方法(GCNZ)的整体流程如下图所示:

13894005-3a6b137f6035911b.jpg

作者使用GLP和IGCN替换了此文中的GCN,并在AWA2数据集上使用一个预训练的ResNet-50网络进行了0样本学习任务的实验,各模型的性能对比结果如下表:

13894005-a68c5628b76c9cae.png

私たちは、IGCN最高のを見ることができます。彼既に最先端のレベルでGCNZ、そのコアコンポーネントGCNより、0サンプル画像認識タスクにおけるその促進のために期待されているオフGCN、GLP及びIGCNの良い効果であるのでこの実験は、図をフィルタリングする一般化方法の適用を示します。著者は、そのためにソースコードをリリースしましたgithubのリポジトリ

5.まとめ

全体的に、アイデアは、それは単純だが非常に深い理解を見えますが、簡潔かつ実用的でフィルタをマッピングすることで、強力な理論的な指導と実践的な意義があります。紙は単なる「ローパスフィルタリング、」単語の本質を覚えて、閉じました。半教師付き分類問題が滑らかで、低域の追求であるので、問題がある「非ローパス」私たちに簡潔で強力なフィルタリングマップが、上のフィルター枠とアイデアのビューを表示する例えばローパスフィルタの記事なので、一貫して適用され、例えば、我々は、関連する問題を解決するために、パス、ハイパスフィルタを設計することができます。私は、この論文は、半教師あり学習が、ドアを開け、私は図のフィルタに基づいて記事の多くを行うことができると信じて、幅広いラインナップを提供しています描画に重要な貢献だと思います。もう一度、私は思考の原則の重要性を感じましたし、この記事から探る、改善とアップグレードのすべては、より深い理解の原則と運用のメカニズムから不可分です。私は将来CVPRより洞察に満ちた、強力な説明の記事で見てほしいです。

私は@が上記のように読んで、この誠実月 AI Yanxishe CVPRチームでオリジナルの出発不備テキスト歓迎の批判があることがあれば、私は、結局I奨学金の浚渫浅い正確には、ビューの正しい解釈のポイントことを保証しようとしたが、しています。すべての原作者の解釈のすべてのメソッド。

一方CVPR 2019オーラル選択された論文の要約、論文のCVの価値があり、ここで、あなたがああ(更新)を見て、関連する文書や情報を見たいために待っていますか?〜高速のCVPRチームにそれを訪問するために下のリンクをクリックしてください

https://ai.yanxishe.com/page/meeting/44

ます。https://www.jianshu.com/p/dba417e506b0で再現

おすすめ

転載: blog.csdn.net/weixin_34402090/article/details/91170265