【のJavaベース] 002 - 詳細ビット演算子と魔法

A:説明ビット演算子

ビット単位演算子は、主にオペランドビットバイナリ操作のために使用しました。ビット単位の表現は、整数値のオペランドおよび結果である各ビット(ビット)に対して計算されます。

オペレータの種類ごとに詳細に説明ビットごとにJava言語ビット演算子と2つのシフト演算子が含まれています。

1、ビット単位

ビットごとの4前記&(と)、|(または)〜(非)と^(排他的論理和)。単項演算子の〜(アク反転)加えて、残りは二項演算子です。表1は、彼らの基本的な使い方を示しています。

表1論理演算子
演算子 意味 結果
ビット単位の論理積 4&5 4
| ビット単位の論理和演算 4 | 5 5
^ ビットごとのXOR演算 4 ^ 5 1
ビット反転動作により、 〜4 -5

1.1とオペレータ

&ビット単位のAND演算のそのルールの演算子は、次のとおり対応するビットが1である場合、演算結果が1つだけあり、そうでなければ0であるが、不十分デジタル、低整列、高いゼロパディングを計算に関与します。したがって、ビット単位のための任意の数と0は、結果は0です。

たとえば、次の式:

100&0


図1は、演算処理を示し、結果はゼロです。


1 0〜100動作中


次の手順は、実行される動作の2ビットの非ゼロ数です。

  1. X INT = 5 、Y = 12であり; //は整数変数ストア2つの数値を作成します
  2. Zはint = X &Y ; //これら2つの数ビットのAND演算、及び結果zを記憶します


2行のステートメント変数Zの値が4で行った後、動作過程を図1に示します。


図2および図5の動作過程12

1.2またはオペレーター

ビットまたはオペレータである|、その動作のルールは、次のとおりデジタル係合動作、低配向、高ゼロの欠如。対応するビットがあれば、結果は1であり、1が存在するようであれば、対応するビットが0の場合、結果はゼロでした。

次の式は、ビットオペレータまたは使用です。

11 | 7


その演算処理のために、図3に示すように、図15は、計算結果です。


11または図3~7計算処理

1.3排他的論理和演算子

ビット単位の排他的OR演算子^であり、計算規則は次のとおり計算に関与する数、低整列、不十分高いゼロパディング、対応するビット(0またはともに1の両方)と同じ場合、結果はゼロであり、対応する場合バイナリビットが同じではない、結果は1です。

次の式では、ビット排他的論理和演算子が使用されています。

11 ^ 7


その演算処理のために、図4に示すように図12に示すように、演算結果です。


4 11 7排他的論理和演算処理


ヒント:一部の高レベルの言語では、オペレータ^は累乗演算子として、区別するために注意を払う必要があります。

1.4否定演算子

ビット反転は、 -演算子は、計算規則は、1つのだけ動作オペランド、1〜0,0のバイナリ1のオペランド。

以下は、式を使用して否定演算子の位置です。

〜10


図5に示すように処理を計算するために65525の演算結果、。


図10。5反転演算処理


私たちは、操作の結果を確認するには、次の手順を使用することができます。

  1. 私はint型= 10 ;
  2. システムの.out printf "%d個の\ nを" 、〜I )。


编译执行以上程序,会发现输出的结果是 -11,而不是 65525。这是因为取反之后的结果是十六进制数,而在上面的程序中使用 %d 将输出转换为了十进制数。

可以使用如下语句查看十六进制结果。

  1. int i=10;
  2. System.out.printf("%x \n",~i);


可以看到输出结果为 fff5,将它转换为二进制是 1111111111110101。这个二进制数的最高位为 1,表示这个数为负数。除最高位外,按位取反再加 1,即得到二进制原码 1000000000001011,用十进制数表示即为 -11。

注意:位运算符的操作数只能是整型或者字符型数据以及它们的变体,不用于 float、double 或者 long 等复杂的数据类型。

2,位移运算符

位移运算符用来将操作数向某个方向(向左或者右)移动指定的二进制位数。表 2 列出了 Java 语言中的两个位移运算符,它们都属于双目运算符。

表2 位移运算符
运算符 含义 实例 结果
» 右移位运算符 8»1 4
« 左移位运算符 9«2 36

2.1 左位移运算符

左移位运算符为 «,其运算规则是:按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。

例如,将整数 11 向左位移 1 位的过程如图 6 所示。


图6 对 11 左移 1 位运算过程


从图 6 中可以看到,原来数的所有二进制位都向左移动 1 位。原来位于左边的最高位 0 被移出舍弃,再向尾部追加 0 补位。最终到的结果是 22,相当于原来数的 2 倍。

2.2 右位移运算符

右位移运算符为 »,其运算规则是:按二进制形式把所有的数字向右移动对应的位数,低位移出(舍弃),高位的空位补零。

例如,将整数 11 向右位移 1 位的过程如图 7 所示。


图7 对 11 右移 1 位运算过程


从图 7 中可以看到,原来数的所有二进制位都向右移动 1 位。原来位于右边的最低位 1 被移出舍弃,再向最高位追加 0 补位。最终到的结果是 5,相当于原数整除 2 的结果。

 

---------详解部分------------ 
作者:http://c.biancheng.net
来源:http://c.biancheng.net 
原文:http://c.biancheng.net/view/784.html 
版权声明:本文为博主原创文章,转载请附上博文链接!

 

二:位运算符妙用

位运算作为底层的基本运算操作,往往是和'高效'二字沾边,适当的运用位运算来优化系统的核心代码,会让你的代码变得十分的精妙。以下是我所遇之的一些简单的位运算技巧作为博文记录。
 

1.获得int型最大值
public static void main(String[] args) {
int maxInt = (1 << 31) - 1;
int maxInt1 = ~(1 << 31);
int maxInt2 = (1 << -1) - 1;
int maxInt3 = (-1>>>1);
System.out.println("十进制: "+ maxInt +" ,二进制: " + Integer.toBinaryString(maxInt));
System.out.println("十进制: "+ maxInt1 +" ,二进制: " + Integer.toBinaryString(maxInt1));
System.out.println("十进制: "+ maxInt2 +" ,二进制: " + Integer.toBinaryString(maxInt2));
System.out.println("十进制: "+ maxInt3 +" ,二进制: " + Integer.toBinaryString(maxInt3));
}
/** ~output~
十进制: 2147483647 ,二进制: 1111111111111111111111111111111
十进制: 2147483647 ,二进制: 1111111111111111111111111111111
十进制: 2147483647 ,二进制: 1111111111111111111111111111111
十进制: 2147483647 ,二进制: 1111111111111111111111111111111
*/
    exp:int类型为32位,要获得int的最大值,只需要最高位为0(正数),其余位为1,便可得到最大数[01111111 11111111 11111111 11111111](2进制)、[0xFFFFFFF](16进制)。

 

2.获得int型最小值
public static void main(String[] args) {
int minInt = 1 << 31;
int minInt1 = -1 << 31;
int minInt2 = 1 << -1;
System.out.println("十进制: "+ minInt +" ,二进制: " + Integer.toBinaryString(minInt));
System.out.println("十进制: "+ minInt1 +" ,二进制: " + Integer.toBinaryString(minInt1));
System.out.println("十进制: "+ minInt2 +" ,二进制: " + Integer.toBinaryString(minInt2));
System.out.println("十进制: "+ 0x80000000 +" ,二进制: " + Integer.toBinaryString(0x80000000));
}
/** ~output~
十进制: -2147483648 ,二进制: 10000000000000000000000000000000
十进制: -2147483648 ,二进制: 10000000000000000000000000000000
十进制: -2147483648 ,二进制: 10000000000000000000000000000000
十进制: -2147483648 ,二进制: 10000000000000000000000000000000
*/
    exp:int类型为32位,要获得int的最大值,只需要最高位为1(负数),其余位为0,便可得到最大数[10000000 00000000 00000000 00000000](2进制)、[0x80000000](16进制)。

       负数最小二进制和正数最大二进制似乎有很大区别,这是因为cpu中只有加法器,减法只是加法的一种形式,而计算机是如何通过加法来计算减法的呢?

计算机对负数的实际表示是补码形式,补码的计算是以负数绝对值的原码(二进制)取反[不操作符号位],再加1得到,举个例子:  

     -7 的绝对值原码(二进制) = 1  000  0111            # 最高位为负数标记
     1  000  0111取反  1 111 1000                            # 符号位不取反
     取反后加1  =  1 111 1000  + 1 = 1 111 1001      # 则得到-7的补码 1 111 1001
     计算 6 -  7 = 6 + (-7) = 0 000 0110 + 1 111 1001 = 1 111 1111
     可以看到得到的结果为1 111 1111 最高位为1 ,结果为负数,是补码的形式。我们反向推理,1 111 1111 - 1 = 1111 1110,取反(最高位符号位不操作) 1 111 1110取反得到原码1 000 0001,所以可知十进制值 -1。
3.乘以2的m次方或除以2的m次方
// 计算n*(2^m)
public static int mulTwoPower(int n,int m){
return n << m;
}

// 计算n/(2^m)
public static int divTwoPower(int n,int m){
return n >> m;
}
public static void main(String[] args) {
System.out.println("5 * 2 * 2 * 2 = "+ mulTwoPower(5, 3) );
System.out.println("6 / 2 / 2 = "+ divTwoPower(6, 2) );
}
/** ~output~
5 * 2 * 2 * 2 = 40
6 / 2 / 2 = 1
*/
我们知道十进制是逢十进一,二进制是逢二进一 ,十进制*10,扩大原来的10倍,尾部多一个0,二进制*2,扩大原来的2倍,尾数也多一个0,这便相当于二进制数左移<<1位,0000 1111 * 2 = 0001 1110, 除以2则反之。

 

4.判断奇偶数                          
// true 奇数 false 偶数
public static boolean isOddNumber(int n){
return (n & 1) == 1;

}

public static void main(String[] args) {
System.out.println("5 是 "+ isOddNumber(5) );
System.out.println("1234 是 "+ isOddNumber(1234) );
}
/** ~output~
5 是 true
1234 是 false
*/
    这里知识是二进制最尾部的尾数为1,则此数必为奇数,尾数为0,此数必为偶数。所以通过与运算便可确定这个数的奇偶性。

 

5.对2的n次方取余
public static int indexFor(int m, int n){
return m & (n - 1);
}

public static void main(String[] args) {
System.out.println("19 与 16 求余 = "+ indexFor(19, 16) );
System.out.println("19 与 16 求余 = "+ 19 % 16 );
}
/** ~output~
19 与 16 求余 = 3
19 与 16 求余 = 3
*/
此方法中n为2的指数值,则其二进制形式的表示中只存在一个1,其余位都为0,例如: 0000 1000、0100 0000、0010 0000等等。

则n-1的二进制形式就为1的位数变为0,其右边位全变为1,例如16的二进制  0001 0000 -1 = 0000 1111

测试m为19的二进制 0001 0011 & 0000 1111 = 0000 0011 = 3,地位保留的结果便是余数。

此位运算也是HashMap中确定元素键(key)值所在哈希数组下标位置的核心方法,此位运算(hash & (length - 1))的效率极高于hash % length的求余, 所以也解释了为什么HashMap的扩容始终为2的倍数(2的指数值)。

 

6.快速幂算法,求n的m次方
// 快速幂算法求n的m次方
public static int power(int n, int m) {
int temp = 1, base = n;
while (m != 0) {
if ((m & 1) == 1) { // 判断奇偶,
temp = temp * base;
}
base = base * base;
m >>= 1; // 舍弃尾部位
}
return temp;
}

public static void main(String[] args) {
System.out.println("3的3次方 = " + power(3,3));
System.out.println("5的7次方 = " + power(5,7));
}
/** ~output~
3的3次方 = 27
5的7次方 = 78125
*/
我们知道,求n的m次方最简单暴力的方法是循环m次求n的乘积,如今的计算机非常强大,这方面的性能似乎完全可以忽略优化,但对于微型机来说,代码优化应该是你时时刻刻需要考虑的,我们也从另外的问题出发:如何使用更少的时间复杂度去实现n的m次方呢?

快速幂算法,下面来看下他的实现原理。

在数学中,存在等式n^m = n^(m1+m2+m3+.....+mk) = n^m1 * n^m2 * n^m3 * ...* n^mk, 且m1 + m2 + m3 +....+mk = m

我们计算m的二进制,如上示例幂数7的二进制=0000 0111,他的十进制计算为: 1+2+4,所以5^7 = 5^(1+2+4) = 5^1 * 5^2 * 5^4,可以看出时间复杂度为f(n)=lgn
---------妙用部分------------
作者:我叫lilee
来源:CSDN
原文:https://blog.csdn.net/minaki_/article/details/81980079
版权声明:本文为博主原创文章,转载请附上博文链接!

おすすめ

転載: www.cnblogs.com/ruanian/p/10936154.html