Python とディープラーニング (13): CNN と IKUN モデル

1. 説明

この記事は、CNN の別の例である IKUN モデルであり、独自に作成したデータセットの例です。これまでの例はすべて Python ライブラリに含まれていますが、今回はデータセットを自分で収集し、下図のように整理する例です。
ここに画像の説明を挿入
ここに画像の説明を挿入

自作データセットの作り方を簡単に紹介します. 私は以下のようにクローラーを使って写真をダウンロードします. ダウンロードする写真の名前を入力するだけで、その後自動的に写真がクロールされます.コードが実行されます。もちろん、クローラーを使用する場合は、関連するライブラリをダウンロードする必要があります。

"""
objective:爬取任意偶像/单词的百度图片
coding: UTF-8
"""
# 导入相关库
import re
import requests
import os


def download(html, search_word, j):
    pic_url = re.findall('"objURL":"(.*?)",.*?"fromURL"', html, re.S)  # 利用正则表达式找每一个图片的网址
    # print(pic_url)

    n = j * 60
    for k in pic_url:
        print('正在下载第' + str(n + 1) + '张图片,图片地址:' + str(k))
        try:
            pic = requests.get(k, timeout=20)
        except requests.exceptions.ConnectionError:
            print('当前图片无法下载')
            continue

        dir_path = r'D:\偶像图片\偶像' + search_word + '_' + str(n + 1) + '.jpg'
        if not os.path.exists('D:\偶像图片'):
            os.makedirs('D:\偶像图片')
        fp = open(dir_path, 'wb')
        fp.write(pic.content)
        fp.close()
        n += 1


if __name__ == '__main__':
    name = input("输入你想要获取偶像的名称: ")
    headers = {
    
    
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36'}
    page = 2  # 可以自定义,想获取几页就是几页,一页有60张图片,但是有的可能就很少,自己注意下
    for i in range(page):
        url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=' + name + '&pn=' + str(i * 20)  # 网址
        result = requests.get(url, headers=headers)  # 请求网址
        # print(result.content)  # 如果运行失败,一步一步找到原因,可以先看下网页输出的内容
        download(result.content.decode('utf-8'), name, i)  # 保存图片
print("偶像图片下载完成")

2. IKUN模型

2.1 関連ライブラリのインポート

次のサードパーティ ライブラリは、深層学習用の Python 固有のライブラリです。事前にダウンロードしてインストールする必要があります

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

2.2 モデルの構築

これはモデルを記述する別の方法です。
3 層の畳み込み層、3 層のプーリング層、次に平坦化層 (2 次元の特徴マップを完全結合層に直線化する)、さらに 3 層の全結合層、およびドロップアウト層が追加されました。

"1.模型建立"
# 1.卷积层,输入图片大小(150, 150, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(150, 150, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数1, 激活函数'sigmoid'
output_layer = Dense(1, activation='sigmoid')
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,
                    conv_layer3, max_pool3, conv_layer4, max_pool4,
                    flatten_layer, third_dropout, hidden_layer1,
                    hidden_layer3, fif_dropout, output_layer])

2.3 モデルのコンパイル

モデルのオプティマイザーは Adam、学習率は 0.01、
損失関数は binary_crossentropy、バイナリ クロス エントロピー、
パフォーマンス指標は精度、
コールバック メカニズムが追加されています。
コールバックのメカニズムは、単純に理解すると、トレーニング セットの正解率は上昇し続けますが、検証セットの正解率は基本的に変化しません。このとき、過学習が発生しており、正解率を高めるために学習率を調整する必要があります。検証セットの。

"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=Adam(lr=0.0001),  # 优化器选择Adam,初始学习率设置为0.0001
              loss='binary_crossentropy',  # 代价函数选择 binary_crossentropy
              metrics=['accuracy'])  # 设置指标为准确率
model.summary()  # 模型统计

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

2.4 データジェネレータ

独自に作成したデータセットを読み込み
、データ ジェネレーターを使用してデータを強化します。つまり、過剰適合の影響を軽減するために、各トレーニングの入力画像は元の画像の反転、平行移動、回転、スケーリングになります。
次に、反復子を介してデータをロードします。ターゲット画像サイズは 150 150 3 で、毎回トレーニング ネットワークにロードされる画像の数を設定し、分類モデル (デフォルトのワンホット エンコーディング) を設定し、データがスクランブルされます。

# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'imgs', 'train')
val_path = os.path.join(sys.path[0], 'imgs', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(150, 150),  # 目标图像大小统一尺寸150
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(150, 150),  # 目标图像大小统一尺寸150
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱

2.5 モデルのトレーニング

モデルのトレーニング数は 20 で、テストは 1 サイクルごとに実行されます。

"3.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器
                   epochs=20,  # 循环次数12次
                   validation_data=val_iter,  # 验证数据的迭代器
                   callbacks=[reduce],  # 回调机制设置为reduce
                   verbose=1)

2.6 モデルの保存

モデルを .h5 ファイル形式で保存します

"4.模型保存"
# 保存训练好的模型
model.save('my_ikun.h5')

2.7 モデルの学習結果の可視化

モデルの学習結果を可視化し、可視化した結果をグラフで表示します

"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_ikun_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_ikun_loss.png', dpi=600)
plt.show()  # 将结果显示出来

3. IKUNのCNNモデル可視化結果

Epoch 1/20
125/125 [==============================] - 30s 229ms/step - loss: 0.6012 - accuracy: 0.6450 - val_loss: 0.3728 - val_accuracy: 0.8200 - lr: 1.0000e-04
Epoch 2/20
125/125 [==============================] - 28s 223ms/step - loss: 0.3209 - accuracy: 0.8710 - val_loss: 0.3090 - val_accuracy: 0.8900 - lr: 1.0000e-04
Epoch 3/20
125/125 [==============================] - 34s 270ms/step - loss: 0.2564 - accuracy: 0.8990 - val_loss: 0.4873 - val_accuracy: 0.8075 - lr: 1.0000e-04
Epoch 4/20
125/125 [==============================] - ETA: 0s - loss: 0.2546 - accuracy: 0.9050
Epoch 4: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.
125/125 [==============================] - 34s 275ms/step - loss: 0.2546 - accuracy: 0.9050 - val_loss: 0.3298 - val_accuracy: 0.8875 - lr: 1.0000e-04
Epoch 5/20
125/125 [==============================] - 31s 246ms/step - loss: 0.1867 - accuracy: 0.9310 - val_loss: 0.3577 - val_accuracy: 0.8500 - lr: 5.0000e-05
Epoch 6/20
125/125 [==============================] - 31s 245ms/step - loss: 0.1805 - accuracy: 0.9260 - val_loss: 0.2816 - val_accuracy: 0.8975 - lr: 5.0000e-05
Epoch 7/20
125/125 [==============================] - 30s 238ms/step - loss: 0.1689 - accuracy: 0.9340 - val_loss: 0.2679 - val_accuracy: 0.9100 - lr: 5.0000e-05
Epoch 8/20
125/125 [==============================] - 30s 237ms/step - loss: 0.2230 - accuracy: 0.9200 - val_loss: 0.2561 - val_accuracy: 0.9075 - lr: 5.0000e-05
Epoch 9/20
125/125 [==============================] - ETA: 0s - loss: 0.1542 - accuracy: 0.9480
Epoch 9: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
125/125 [==============================] - 30s 238ms/step - loss: 0.1542 - accuracy: 0.9480 - val_loss: 0.2527 - val_accuracy: 0.9100 - lr: 5.0000e-05
Epoch 10/20
125/125 [==============================] - 30s 239ms/step - loss: 0.1537 - accuracy: 0.9450 - val_loss: 0.2685 - val_accuracy: 0.9125 - lr: 2.5000e-05
Epoch 11/20
125/125 [==============================] - 33s 263ms/step - loss: 0.1395 - accuracy: 0.9540 - val_loss: 0.2703 - val_accuracy: 0.9100 - lr: 2.5000e-05
Epoch 12/20
125/125 [==============================] - ETA: 0s - loss: 0.1331 - accuracy: 0.9560
Epoch 12: ReduceLROnPlateau reducing learning rate to 1.249999968422344e-05.
125/125 [==============================] - 31s 250ms/step - loss: 0.1331 - accuracy: 0.9560 - val_loss: 0.2739 - val_accuracy: 0.9025 - lr: 2.5000e-05
Epoch 13/20
125/125 [==============================] - 31s 245ms/step - loss: 0.1374 - accuracy: 0.9500 - val_loss: 0.2551 - val_accuracy: 0.9250 - lr: 1.2500e-05
Epoch 14/20
125/125 [==============================] - 32s 254ms/step - loss: 0.1261 - accuracy: 0.9590 - val_loss: 0.2705 - val_accuracy: 0.9050 - lr: 1.2500e-05
Epoch 15/20
125/125 [==============================] - ETA: 0s - loss: 0.1256 - accuracy: 0.9620
Epoch 15: ReduceLROnPlateau reducing learning rate to 6.24999984211172e-06.
125/125 [==============================] - 31s 248ms/step - loss: 0.1256 - accuracy: 0.9620 - val_loss: 0.2449 - val_accuracy: 0.9125 - lr: 1.2500e-05
Epoch 16/20
125/125 [==============================] - 31s 245ms/step - loss: 0.1182 - accuracy: 0.9610 - val_loss: 0.2460 - val_accuracy: 0.9225 - lr: 6.2500e-06
Epoch 17/20
125/125 [==============================] - ETA: 0s - loss: 0.1261 - accuracy: 0.9610
Epoch 17: ReduceLROnPlateau reducing learning rate to 3.12499992105586e-06.
125/125 [==============================] - 30s 243ms/step - loss: 0.1261 - accuracy: 0.9610 - val_loss: 0.2466 - val_accuracy: 0.9250 - lr: 6.2500e-06
Epoch 18/20
125/125 [==============================] - 30s 240ms/step - loss: 0.1098 - accuracy: 0.9630 - val_loss: 0.2544 - val_accuracy: 0.9125 - lr: 3.1250e-06
Epoch 19/20
125/125 [==============================] - ETA: 0s - loss: 0.1165 - accuracy: 0.9630
Epoch 19: ReduceLROnPlateau reducing learning rate to 1.56249996052793e-06.
125/125 [==============================] - 31s 246ms/step - loss: 0.1165 - accuracy: 0.9630 - val_loss: 0.2476 - val_accuracy: 0.9225 - lr: 3.1250e-06
Epoch 20/20
125/125 [==============================] - 35s 281ms/step - loss: 0.1214 - accuracy: 0.9570 - val_loss: 0.2503 - val_accuracy: 0.9225 - lr: 1.5625e-06

ここに画像の説明を挿入
ここに画像の説明を挿入
上記の結果から、モデルの精度率は 92% に達しており、依然として非常に高いことがわかります。

4. 完全なコード

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

"1.模型建立"
# 1.卷积层,输入图片大小(150, 150, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(150, 150, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数1, 激活函数'sigmoid'
output_layer = Dense(1, activation='sigmoid')
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,
                    conv_layer3, max_pool3, conv_layer4, max_pool4,
                    flatten_layer, third_dropout, hidden_layer1,
                    hidden_layer3, fif_dropout, output_layer])
"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=Adam(lr=0.0001),  # 优化器选择Adam,初始学习率设置为0.0001
              loss='binary_crossentropy',  # 代价函数选择 binary_crossentropy
              metrics=['accuracy'])  # 设置指标为准确率
model.summary()  # 模型统计

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'imgs', 'train')
val_path = os.path.join(sys.path[0], 'imgs', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(150, 150),  # 目标图像大小统一尺寸150
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(150, 150),  # 目标图像大小统一尺寸150
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱
"3.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器
                   epochs=20,  # 循环次数12次
                   validation_data=val_iter,  # 验证数据的迭代器
                   callbacks=[reduce],  # 回调机制设置为reduce
                   verbose=1)
"4.模型保存"
# 保存训练好的模型
model.save('my_ikun.h5')

"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_ikun_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_ikun_loss.png', dpi=600)
plt.show()  # 将结果显示出来



おすすめ

転載: blog.csdn.net/qq_47598782/article/details/132050736