ViT モデル - pytorch の実装

論文ポータル:画像は 16X16 ワードに相当します: 大規模な画像認識のためのトランスフォーマー

ViTモデルの特徴:

Conv 構造を放棄し、Transformerを使用して画像から特徴を抽出し画像分類タスクを完了します。

ViT モデルの構造:

ViTの構造
埋め込み:パッチ埋め込み位置埋め込みクラス埋め込みを含む;
パッチ埋め込み: 入力画像をサブ画像(パッチ)に順次分割し、ベクトル列(トークン)に変換;
位置埋め込み: クラストークンの追加(継ぎ合わせ)分類に使用され、学習可能なパラメータである;
Position Embedding: 行列の加算によって実現されるトークンの位置情報をエンコードし、学習可能なパラメータである;
Transformer Encoder : Transformer Encoder Block、TransformerをL層繰り返し積層エンコーダ ブロックの構造は図の右側に示されており、LayerNorm + Multi-Head tention + Residual + LayerNorm + MLP + Residual; LayerNorm : NLP
分野で一般的に使用される正規化方法、計算式は BN に似ています, Batchとは関係ありませんが、Token(単語)ごとに標準化されているので参考:Layer Normalization ;
Multi-Head Attendance: 自己注意の一種、構造と計算式は次のとおりです、参考: Attendance Is All You Need ;
マルチヘッドアテンション
注意力の計算式
マルチヘッドアテンションの計算式
MLP : Linear + GELU + Dropout + Linear + Dropout;
MLP Head : LayerNorm を実行し、クラス トークンを抽出し、その後Linear を実行します。出力ノードの数はカテゴリの数です。
(ImageNet-21k データセットの場合、クラス トークンに対して Linear + Tanh + Linear を実行します)

さまざまなサイズの ViT モデル:

さまざまなサイズの ViT モデル

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange


class Embedding(nn.Module):  # Patch Embedding + Position Embedding + Class Embedding
    def __init__(self, image_channels=3, image_size=224, patch_size=16, dim=768, drop_ratio=0.):
        super(Embedding, self).__init__()
        self.num_patches = (image_size // patch_size) ** 2  # Patch数量

        self.patch_conv = nn.Conv2d(image_channels, dim, patch_size, patch_size)  # 使用卷积将图像划分成Patches
        self.cls_token = nn.Parameter(torch.zeros(1, 1, dim))  # class embedding
        self.pos_emb = nn.Parameter(torch.zeros(1, self.num_patches + 1, dim))  # position embedding
        self.dropout = nn.Dropout(drop_ratio)

    def forward(self, x):
        x = self.patch_conv(x)
        x = rearrange(x, "B C H W -> B (H W) C")
        cls_token = torch.repeat_interleave(self.cls_token, x.shape[0], dim=0)  # (1,1,dim) -> (B,1,dim)
        x = torch.cat([cls_token, x], dim=1)  # (B,1,dim) cat (B,num_patches,dim) --> (B,num_patches+1,dim)
        x = x + self.pos_emb
        return self.dropout(x)  # token


class MultiHeadAttention(nn.Module):  # Multi-Head Attention
    def __init__(self, dim, num_heads=8, drop_ratio=0.):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=False)  # 使用一个Linear,计算得到qkv
        self.dropout = nn.Dropout(drop_ratio)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x):
        # B: Batch Size / P: Num of Patches / D: Dim of Patch / H: Num of Heads / d: Dim of Head
        qkv = self.qkv(x)
        qkv = rearrange(qkv, "B P (C H d) -> C B H P d", C=3, H=self.num_heads, d=self.head_dim)
        q, k, v = qkv[0], qkv[1], qkv[2]  # 分离qkv
        k = rearrange(k, "B H P d -> B H d P")
        # Attention(Q, K, V ) = softmax(QKT/dk)V (T表示转置)
        attn = torch.matmul(q, k) * self.head_dim ** -0.5  # QKT/dk
        attn = F.softmax(attn, dim=-1)  # softmax(QKT/dk)
        attn = self.dropout(attn)
        x = torch.matmul(attn, v)  # softmax(QKT/dk)V
        x = rearrange(x, "B H P d -> B P (H d)")
        x = self.proj(x)
        x = self.dropout(x)
        return x


class MLP(nn.Module):  # MLP
    def __init__(self, in_dims, hidden_dims=None, drop_ratio=0.):
        super(MLP, self).__init__()
        if hidden_dims is None:
            hidden_dims = in_dims * 4  # linear的hidden_dims默认为in_dims的4倍

        self.fc1 = nn.Linear(in_dims, hidden_dims)
        self.fc2 = nn.Linear(hidden_dims, in_dims)
        self.gelu = nn.GELU()
        self.dropout = nn.Dropout(drop_ratio)

    def forward(self, x):
        # Linear + GELU + Dropout + Linear + Dropout
        x = self.fc1(x)
        x = self.gelu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class EncoderBlock(nn.Module):  # Transformer Encoder Block
    def __init__(self, dim, num_heads=8, drop_ratio=0.):
        super(EncoderBlock, self).__init__()

        self.layernorm1 = nn.LayerNorm(dim)
        self.multiheadattn = MultiHeadAttention(dim, num_heads)
        self.dropout = nn.Dropout(drop_ratio)
        self.layernorm2 = nn.LayerNorm(dim)
        self.mlp = MLP(dim)

    def forward(self, x):
        # 两次残差连接,分别在Multi-Head Attention和MLP之后
        x0 = x
        x = self.layernorm1(x)
        x = self.multiheadattn(x)
        x = self.dropout(x)
        x1 = x + x0  # 第一次残差连接
        x = self.layernorm2(x1)
        x = self.mlp(x)
        x = self.dropout(x)
        return x + x1  # 第二次残差连接


class MLPHead(nn.Module):  # MLP Head
    def __init__(self, dim, num_classes=1000):
        super(MLPHead, self).__init__()
        self.layernorm = nn.LayerNorm(dim)
        # 对于一般数据集,此处为1层Linear; 对于ImageNet-21k数据集,此处为Linear+Tanh+Linear
        self.mlphead = nn.Linear(dim, num_classes)

    def forward(self, x):
        x = self.layernorm(x)
        cls = x[:, 0, :]  # 去除class token
        return self.mlphead(cls)


class ViT(nn.Module):  # Vision Transformer
    def __init__(self, image_channels=3, image_size=224, num_classes=1000, patch_size=16, dim=768, num_heads=12,
                 layers=12):
        super(ViT, self).__init__()
        self.embedding = Embedding(image_channels, image_size, patch_size, dim)
        self.encoder = nn.Sequential(
            *[EncoderBlock(dim, num_heads) for i in range(layers)]  # encoder结构为layers(L)个Transformer Encoder Block
        )
        self.head = MLPHead(dim, num_classes)

    def forward(self, x):
        x_emb = self.embedding(x)
        feature = self.encoder(x_emb)
        return self.head(feature)


def vit_base(num_classes=1000):  # ViT-Base
    return ViT(image_channels=3, image_size=224, num_classes=num_classes, patch_size=16, dim=768, num_heads=12,
               layers=12)


def vit_large(num_classes=1000):  # ViT-Large
    return ViT(image_channels=3, image_size=224, num_classes=num_classes, patch_size=16, dim=1024, num_heads=16,
               layers=24)


def vit_huge(num_classes=1000):  # ViT-Huge
    return ViT(image_channels=3, image_size=224, num_classes=num_classes, patch_size=16, dim=1280, num_heads=16,
               layers=32)


if __name__ == "__main__":
    images = torch.randn(8, 3, 224, 224)
    vb = vit_base()
    vl = vit_large()
    vh = vit_huge()
    print(vb(images).shape)
    print(vl(images).shape)
    print(vh(images).shape)

おすすめ

転載: blog.csdn.net/Peach_____/article/details/128767846