设计模式(23)策略模式

策略模式简介

在解决一个某个项目的实际问题时,可能会用到不同的算法,问题不固定,解决问题的算法也不固定,就像核算不同级别员工的工资一样。策略模式就是为了适用于这一种情况。

策略模式:定义一系列算法,将每一个算法封装起来,并让它们可以相互替换。策略模式让算法可以独立于使用它的客户而变化。

策略模式结构

在这里插入图片描述
策略模式由上下文类和策略类组成,具体如下:

  • Context(上下文类) :上下文类是决定使用何种算法的角色,可以根据不同的具体问题时实例化不同的具体策略类对象;
  • Strategy(抽象策略类):抽象策略类,使上下文类可以无差别的调用不同的具体策略的方法;
  • ConcreteStrategy(具体策略类):具体算法。

策略模式代码实例

一个简单的实现代码:

#include <iostream>

using namespace std;

// The abstract strategy
class Strategy
{
    
    
public:
  virtual void AlgorithmInterface() = 0;
};

class ConcreteStrategyA : public Strategy
{
    
    
public:
  void AlgorithmInterface()
  {
    
    
    cout << "I am from ConcreteStrategyA." << endl;
  }
};

class ConcreteStrategyB : public Strategy
{
    
    
public:
  void AlgorithmInterface()
  {
    
    
    cout << "I am from ConcreteStrategyB." << endl;
  }
};

class ConcreteStrategyC : public Strategy
{
    
    
public:
  void AlgorithmInterface()
  {
    
    
    cout << "I am from ConcreteStrategyC." << endl;
  }
};

class Context
{
    
    
public:
  Context(Strategy *pStrategyArg) : pStrategy(pStrategyArg) {
    
    }
  
  void ContextInterface()
  {
    
    
    pStrategy->AlgorithmInterface();
  }

private:
  Strategy *pStrategy;
};

int main()
{
    
    
  // Create the Strategy
  Strategy *pStrategyA = new ConcreteStrategyA;
  Strategy *pStrategyB = new ConcreteStrategyB;
  Strategy *pStrategyC = new ConcreteStrategyC;
  
  Context *pContextA = new Context(pStrategyA);
  Context *pContextB = new Context(pStrategyB);
  Context *pContextC = new Context(pStrategyC);

  pContextA->ContextInterface();
  pContextB->ContextInterface();
  pContextC->ContextInterface();

  if (pStrategyA)
    delete pStrategyA;

  if (pStrategyB)
    delete pStrategyB;
  
  if (pStrategyC)
    delete pStrategyC;

  if (pContextA)
    delete pContextA;

  if (pContextB)
    delete pContextB;
  
  if (pContextC)
    delete pContextC;
}

一个与简单工厂模式结合的例子:

#include <iostream>

using namespace std;

// Define the strategy type
typedef enum StrategyType
{
    
    
  StrategyA,
  StrategyB,
  StrategyC
} STRATEGYTYPE;

// The abstract strategy
class Strategy
{
    
    
public:
  virtual void AlgorithmInterface() = 0;
  virtual ~Strategy() = 0; 
};

Strategy::~Strategy() {
    
    }

class ConcreteStrategyA : public Strategy
{
    
    
public:
  void AlgorithmInterface()
  {
    
    
    cout << "I am from ConcreteStrategyA." << endl;
  }

  ~ConcreteStrategyA() {
    
    }
};

class ConcreteStrategyB : public Strategy
{
    
    
public:
  void AlgorithmInterface()
  {
    
    
    cout << "I am from ConcreteStrategyB." << endl;
  }

  ~ConcreteStrategyB() {
    
    }
};

class ConcreteStrategyC : public Strategy
{
    
    
public:
  void AlgorithmInterface()
  {
    
    
    cout << "I am from ConcreteStrategyC." << endl;
  }

  ~ConcreteStrategyC() {
    
    }
};

class Context
{
    
    
public:
  Context(STRATEGYTYPE strategyType)
  {
    
    
    switch (strategyType)
    {
    
    
    case StrategyA:
      pStrategy = new ConcreteStrategyA;
      break;

    case StrategyB:
      pStrategy = new ConcreteStrategyB;
      break;

    case StrategyC:
      pStrategy = new ConcreteStrategyC;
      break;

    default:
      break;
    }
  }

  ~Context()
  {
    
    
    if (pStrategy)
      delete pStrategy;
  }

  void ContextInterface()
  {
    
    
    if (pStrategy)
      pStrategy->AlgorithmInterface();
  }

private:
  Strategy *pStrategy;
};

int main()
{
    
    
  Context *pContext = new Context(StrategyA);
  pContext->ContextInterface();

  if (pContext)
    delete pContext;
}

策略模式总结

优点:

  • 符合开闭原则,策略模式易于扩展;
  • 客户端可以无差别地通过公共接口调用,灵活的调用不同的算法策略;
  • 提供了一个算法族管理机制和维护机制。

缺点:

  • 客户端必须要知道所有的策略,以便在使用时按需实例化具体策略;
  • 系统会产生很多单独的类,增加系统中类的数量;
  • 客户端在同一时间只能使用一种策略。

适用环境:

  • 系统需要在一个算法族中动态选择一种算法,可以将这些算法封装到多个具体算法类中;
  • 不希望客户端知道复杂的、与算法相关的数据结构,在具体策略类中封装与算法相关的数据结构,可以提高算法的安全性。

おすすめ

転載: blog.csdn.net/qq_24649627/article/details/115491398