深層学習法に基づく入門から練習(3日目)までのパドル強化学習:DQN

背景紹介

実際のシーンにはさまざまな状況があり、単純に離散状態に抽象化することはできません(または離散状態が多すぎる)。その結果、テーブルベースの方法を使用できません。現時点では、役立つ深層学習方法を導入する必要があります。状態を認識し、Q関数として機能して、この状態の各アクションのQを見つけます。

値関数はQ関数です。Qテーブルの関数は、テーブルを検索し、入力状態のアクションに従ってQ値を出力すること
です。テーブル方式の欠点:

  • テーブルは多くのメモリを消費する可能性があります
  • テーブルが非常に大きい場合、テーブルの検索効率は低くなります。

したがって、実際には、Q関数をパラメーターとともに使用してQテーブルを概算できます。たとえば、多項式関数またはニューラルネットワークを使用して
、値関数の利点概算できます。

  • 限られたパラメータのみを保存する必要があります
  • 状態の一般化、同様の状態を同じように出力できます

基本構造

DQNとQラーニングの違い

このことから、Qラーニングは環境に応じて人工的にテーブルを更新し、テーブルを検索してこの状態の各Aの値を取得しますが、DQNはニューラルネットワークを使用してこのテーブルを維持する手動プロセスを置き換え、直接神経を解放していることがわかります。ネットワークは、この状態の各Aの値を環境から計算します。

監視対象のニューラルネットワークのトレーニングと同様に、DQNトレーニングは損失の違いにすぎません。

DQNの2つの重要な問題

問題

  • ニューラルネットワークでは、トレーニング中に各サンプルを個別に配布する必要がありますが、強化学習の状態は表と裏に依存します。
  • ニューラルネットワークが最適化された後、同じ入力が同じ出力を持たない可能性があるため、それに応じてターゲット値も変更されます。これは最適化には不便です。

解決

再生を体験する

状態の乱れをサンプリングした後、ニューラルネットワークを入力して対応する値を取得し、ターゲット値に従ってニューラルネットワークを最適化し、サンプリングした状態をエクスペリエンスプールに入れて再利用し、サンプリングしたサンプルを再利用できるようにします。そして、サンプルをシャッフルして、サンプルをほぼ独立させます。

Qターゲットを修正

数回繰り返した後、ニューラルネットワークのパラメータを修正し、モデルの出力をターゲット値として使用して、ニューラルネットワークの最適化を継続しました。

DQNプロセスの要約は、次の図のように表すことができます。

PARLフレームワークエージェント構造

3つのレイヤーで右から左に見てください:

エージェント:環境と直接対話する責任があり、sample()はe-greedyc戦略を使用してトレーニング中に決定をサンプリングし、predict()はトレーニングが完了した後の環境に基づく実際の決定です。learn()は、更新アルゴリズムの呼び出しとトレーニングプロセスの制御を担当します。

アルゴリズム:ニューラルネットワークモデルの確立とトレーニング、およびターゲットモデルの同期を担当します。

モデル:ニューラルネットワークモデルの特定の構造。

詳細コード

モデル定義

class Model(parl.Model):
    def __init__(self, act_dim):

        hide1_size = 128
        hide2_size = 256
        hide3_size = 128

        self.fc1 = layers.fc(size = hide1_size,act='relu')
        self.fc2 = layers.fc(size = hide2_size,act='relu')
        self.fc3 = layers.fc(size = hide3_size,act='relu')
        self.fc4 = layers.fc(size = act_dim,act=None)

    def value(self, obs):
        # 定义网络
        # 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2), Q(s,a3)...]
        
        h1 = self.fc1(obs)
        h2 = self.fc2(h1)
        h3 = self.fc3(h2)
        Q = self.fc4(h3)

        return Q

アルゴリズムの定義

すでに実装されているものをPALLから直接呼び出す

#from parl.algorithms import DQN 


# from parl.algorithms import DQN # 也可以直接从parl库中导入DQN算法

class DQN(parl.Algorithm):
    def __init__(self, model, act_dim=None, gamma=None, lr=None):
        """ DQN algorithm
        
        Args:
            model (parl.Model): 定义Q函数的前向网络结构
            act_dim (int): action空间的维度,即有几个action
            gamma (float): reward的衰减因子
            lr (float): learning rate 学习率.
        """
        self.model = model
        self.target_model = copy.deepcopy(model)

        assert isinstance(act_dim, int)
        assert isinstance(gamma, float)
        assert isinstance(lr, float)
        self.act_dim = act_dim
        self.gamma = gamma
        self.lr = lr

    def predict(self, obs):
        """ 使用self.model的value网络来获取 [Q(s,a1),Q(s,a2),...]
        """
        return self.model.value(obs)

    def learn(self, obs, action, reward, next_obs, terminal):
        """ 使用DQN算法更新self.model的value网络
        """
        # 从target_model中获取 max Q' 的值,用于计算target_Q
        next_pred_value = self.target_model.value(next_obs)
        best_v = layers.reduce_max(next_pred_value, dim=1)
        best_v.stop_gradient = True  # 阻止梯度传递
        terminal = layers.cast(terminal, dtype='float32')
        target = reward + (1.0 - terminal) * self.gamma * best_v

        pred_value = self.model.value(obs)  # 获取Q预测值
        # 将action转onehot向量,比如:3 => [0,0,0,1,0]
        action_onehot = layers.one_hot(action, self.act_dim)
        action_onehot = layers.cast(action_onehot, dtype='float32')
        # 下面一行是逐元素相乘,拿到action对应的 Q(s,a)
        # 比如:pred_value = [[2.3, 5.7, 1.2, 3.9, 1.4]], action_onehot = [[0,0,0,1,0]]
        #  ==> pred_action_value = [[3.9]]
        pred_action_value = layers.reduce_sum(
            layers.elementwise_mul(action_onehot, pred_value), dim=1)

        # 计算 Q(s,a) 与 target_Q的均方差,得到loss
        cost = layers.square_error_cost(pred_action_value, target)
        cost = layers.reduce_mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=self.lr)  # 使用Adam优化器
        optimizer.minimize(cost)
        return cost

    def sync_target(self):
        """ 把 self.model 的模型参数值同步到 self.target_model
        """
        self.model.sync_weights_to(self.target_model)

エージェントの定義

class Agent(parl.Agent):
    def __init__(self,
                 algorithm,
                 obs_dim,
                 act_dim,
                 e_greed=0.1,
                 e_greed_decrement=0):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(Agent, self).__init__(algorithm)

        self.global_step = 0
        self.update_target_steps = 200  # 每隔200个training steps再把model的参数复制到target_model中

        self.e_greed = e_greed  # 有一定概率随机选取动作,探索
        self.e_greed_decrement = e_greed_decrement  # 随着训练逐步收敛,探索的程度慢慢降低

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):  # 搭建计算图用于 预测动作,定义输入输出变量
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.value = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):  # 搭建计算图用于 更新Q网络,定义输入输出变量
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            action = layers.data(name='act', shape=[1], dtype='int32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)

    def sample(self, obs):
        sample = np.random.rand()  # 产生0~1之间的小数
        if sample < self.e_greed:
            act = np.random.randint(self.act_dim)  # 探索:每个动作都有概率被选择
        else:
            act = self.predict(obs)  # 选择最优动作
        self.e_greed = max(
            0.01, self.e_greed - self.e_greed_decrement)  # 随着训练逐步收敛,探索的程度慢慢降低
        return act

    def predict(self, obs):  # 选择最优动作
        obs = np.expand_dims(obs, axis=0)
        pred_Q = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.value])[0]
        pred_Q = np.squeeze(pred_Q, axis=0)
        act = np.argmax(pred_Q)  # 选择Q最大的下标,即对应的动作
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        # 每隔200个training steps同步一次model和target_model的参数
        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1

        act = np.expand_dims(act, -1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int32'),
            'reward': reward,
            'next_obs': next_obs.astype('float32'),
            'terminal': terminal
        }
        cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.cost])[0]  # 训练一次网络
        return cost

体験プール

import random
import collections
import numpy as np

class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)

    # 增加一条经验到经验池中
    def append(self, exp):
        self.buffer.append(exp)

    # 从经验池中选取N条经验出来
    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []

        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)

        return np.array(obs_batch).astype('float32'), \
            np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
            np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')

    def __len__(self):
        return len(self.buffer)

トレーニングとテスト

# 训练一个episode
def run_episode(env, agent, rpm):
    total_reward = 0
    obs = env.reset()
    step = 0
    while True:
        step += 1
        action = agent.sample(obs)  # 采样动作,所有动作都有概率被尝试到
        next_obs, reward, done, _ = env.step(action)
        rpm.append((obs, action, reward, next_obs, done))

        # train model
        if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
            (batch_obs, batch_action, batch_reward, batch_next_obs,
             batch_done) = rpm.sample(BATCH_SIZE)
            train_loss = agent.learn(batch_obs, batch_action, batch_reward,
                                     batch_next_obs,
                                     batch_done)  # s,a,r,s',done

        total_reward += reward
        obs = next_obs
        if done:
            break
    return total_reward


# 评估 agent, 跑 5 个episode,总reward求平均
def evaluate(env, agent, render=False):
    eval_reward = []
    for i in range(5):
        obs = env.reset()
        episode_reward = 0
        while True:
            action = agent.predict(obs)  # 预测动作,只选最优动作
            obs, reward, done, _ = env.step(action)
            episode_reward += reward
            if render:
                env.render()
            if done:
                break
        eval_reward.append(episode_reward)
    return np.mean(eval_reward)

トータルプロセスコントロール

# 创建环境
env = gym.make('CartPole-v0') # CartPole-v0: expected reward > 180                MountainCar-v0 : expected reward > -120
action_dim = env.action_space.n  # MountainCar-v0: 3
obs_shape = env.observation_space.shape  # MountainCar-v0: (2,)

# 创建经验池
rpm = ReplayMemory(MEMORY_SIZE)  # DQN的经验回放池


# 根据parl框架构建agent
model = Model(act_dim = action_dim)
algorithm = DQN(model,act_dim = action_dim,gamma=GAMMA,lr = LEARNING_RATE)
agent = Agent(algorithm
        ,obs_dim=obs_shape[0]
        ,act_dim=action_dim
        ,e_greed=0.1
        ,e_greed_decrement=1e-6)



# 加载模型
# save_path = './dqn_model.ckpt'
# agent.restore(save_path)

# 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
while len(rpm) < MEMORY_WARMUP_SIZE:
    run_episode(env, agent, rpm)

max_episode = 2000

# 开始训练
episode = 0
while episode < max_episode:  # 训练max_episode个回合,test部分不计算入episode数量
    # train part
    for i in range(0, 50):
        total_reward = run_episode(env, agent, rpm)
        episode += 1

    # test part
    eval_reward = evaluate(env, agent, render=False)  # render=True 查看显示效果
    logger.info('episode:{}    e_greed:{}   test_reward:{}'.format(
        episode, agent.e_greed, eval_reward))

# 训练结束,保存模型
save_path = './dqn_model.ckpt'
agent.save(save_path)

おすすめ

転載: blog.csdn.net/fan1102958151/article/details/106879093