Connaissances mathématiques (1)

1. Théorie des nombres

1.1 nombres premiers

Définition : Tous les nombres naturels supérieurs à 1 sont appelés nombres premiers (nombres premiers) s'ils ne contiennent que deux diviseurs de 1 et de lui-même.

Jugement des nombres premiers : division de première instance

bool is_prime(int n)
{
    if(n < 2) return false;
    for(int i = 2;i <= n / i;i ++)
    {
        if(n % i == 0)
            return false;
    }
    return true;
}

le premier facteur

Idée de base : énumérer tous les diviseurs de n de petit à grand.

void divide(int n)
{
    for(int i = 2;i <= n;i ++)
    {
        if(n % i == 0)
        {
            int s = 0;
            while(n % i == 0)
            {
                n /= i;
                s ++;
            }
            printf("%d %d\n",i,s)
        }
    }
}

Méthode du tamis

#include<iostream>
#include<algorithm>

using namespace std;

int primes[N],cnt;
bool st[N];

void get_prime(int n)
{
    for(int i = 2;i <= n;i ++)
    {
        if(!st[i])
        {
            primes[cnt ++] = n;
            for(int j = i + i;j <= n;j += i) st[j] = true;
        }
    }
}

tamis linéaire

Il est garanti que chaque nombre est éliminé par son plus petit facteur premier

#include<iostream>
#include<algorithm>

using namespace std;

int primes[N],cnt;
bool st[N];

void get_primes(int n)
{
    for(int i = 2;i<= n;i ++)
    {
        if(!st[i]) primes[cnt ++] = i;
        for(int j = 0;primes[j] <= n / i;j ++)
        {
            st[primes[j] * i = true;
            if(i % primes[j] == 0) break;  //primes[j]一定是i的最小质因子
         }
    }
}

1.2 approximation

 méthode de division de première instance

vector<int> get_divisors(int n)
{
    vector<int> res;
    
    for(int i = 1;i <= n / i;i ++)
        if(n % i == 0)
        {
            res.push_back(i);
            if(i != n / i) res.push_back(n / i);
        }
    sort(res.begin(),res.end());
    return res;
}

somme des diviseurs et des diviseurs

Algorithme euclidien

//返回a与b的最大公约数
int gcd(int a,int b)
{
    return b ? gcd(b,(a % b) : a);
}

2. Théorème d'Euler

2.1 Fonction d'Euler

Définition : X(n) représente le nombre de 1~n qui est premier par rapport à n

Étapes de l'algorithme :

  1. Supprimer les multiples de p1,p2,...,pk de 1~N
  2. plus tous les multiples de Pi*Pj
  3. Soustraire tous les multiples de Pi*Pj*Pk
#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

int main()
{
    int n;
    cin>>n;

    while(n --)
    {
        int a;
        cin>>a;

        int res = a;
        //分解质因数
        for(int i = 2 ;i <= a;i ++)
        {
            if(a % i == 0)
            {
                res = res / i * (i - 1);
                while (a % i == 0) a /= i;
            }
        }
        if(a > 1) res = res / a * (a - 1);

        cout<<res<<endl;
    }
    return 0;
}

puissance rapide 

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

//求a^k % p
int main(int a,int k,int p)
{
    int res = 1;
    while(k)
    {
        //如果当前k的末位为1,则
        if( k & 1) res = (LL)res * a % p;
        //删除k的末位
        k >>= 1;
        //把a平方
        a = (LL) a * a % p;
    }
    return res;
}
int main()
{
    int n;
    scanf("%d",&n);
    
    while(n --)
    {
        int a,k,p;
        scanf("%d%d%d",&a,&k,&p);
        
        printf("%d\n",qmi(a,k,p));
    }
    return 0;
}

Je suppose que tu aimes

Origine blog.csdn.net/weixin_64443786/article/details/132089037
conseillé
Classement