5. Docker instala la replicación maestro-esclavo de mysql y el clúster redis

Instalar la replicación maestro-esclavo de mysql

Pasos de configuración maestro-esclavo
1.1 Crear una nueva instancia de contenedor de servidor maestro 3307

docker run -p 3307:3306 --name mysql-master #3307映射到3306,容器名为mysql-master
-v /app/mysql/mydata/mysql-master/log:/var/log/mysql #容器数据卷
-v /app/mysql/mydata/mysql-master/data:/var/lib/mysql
-v /app/mysql/mydata/mysql-master/conf:/etc/mysql
-e MYSQL_ROOT_PASSWORD=root # -e配置环境,配置了root的密码为root
-d mysql:5.7

完整命令
docker run -p 3307:3306 --name mysql-master -v /app/mysql/mydata/mysql-master/log:/var/log/mysql -v /app/mysql/mydata/mysql-master/data:/var/lib/mysql -v /app/mysql/mydata/mysql-master/conf:/etc/mysql -e MYSQL_ROOT_PASSWORD=root -d mysql:5.7

2. Ingrese al directorio /mydata/mysql-master/conf y cree un nuevo my.cnf

[mysqld]
## 设置server_id,同一局域网中需要唯一
server_id=101 
## 指定不需要同步的数据库名称
binlog-ignore-db=mysql  
## 开启二进制日志功能
log-bin=mall-mysql-bin  
## 设置二进制日志使用内存大小(事务)
binlog_cache_size=1M  
## 设置使用的二进制日志格式(mixed,statement,row)
binlog_format=mixed  
## 二进制日志过期清理时间。默认值为0,表示不自动清理。
expire_logs_days=7  
## 跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。
## 如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致
slave_skip_errors=1062

3. Reinicie la instancia maestra después de modificar la configuración.

docker restart mysql-master

4. Ingrese al contenedor mysql-master

[root@centos100 conf]# docker exec -it mysql-master /bin/bash
root@b58afbb1ac1a:/# mysql -uroot -p
Enter password: 
...
mysql> show databases;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |		<--上面配置不需要同步的数据库名称mysql,指的就是这个库
| performance_schema |
| sys                |
+--------------------+
4 rows in set (0.00 sec)

5. Cree un usuario de sincronización de datos en la instancia del contenedor maestro.

#创建一个用户
mysql> create user 'slave'@'%' identified by '123456';
Query OK, 0 rows affected (0.03 sec)

#授权
mysql> grant replication slave,replication client on *.* to 'slave'@'%';
Query OK, 0 rows affected (0.00 sec)

6. Cree un nuevo contenedor de servidor esclavo 3308

docker run -p 3308:3306 --name mysql-slave #端口映射,3308映射到3306,修改容器名为mysql-slave
-v /app/mysql/mydata/mysql-slave/log:/var/log/mysql #添加容器卷
-v /app/mysql/mydata/mysql-slave/data:/var/lib/mysql
-v /app/mysql/mydata/mysql-slave/conf:/etc/mysql 
-e MYSQL_ROOT_PASSWORD=root #创建root密码为root
-d mysql:5.7 #镜像名

完整命令
docker run -p 3308:3306 --name mysql-slave -v /app/mysql/mydata/mysql-slave/log:/var/log/mysql -v /app/mysql/mydata/mysql-slave/data:/var/lib/mysql -v /app/mysql/mydata/mysql-slave/conf:/etc/mysql -e MYSQL_ROOT_PASSWORD=root -d mysql:5.7

7. Ingrese al directorio /app/mysql/mydata/mysql-slave/conf y cree un nuevo my.cnf

[mysqld]
## 设置server_id,同一局域网中需要唯一
server_id=102
## 指定不需要同步的数据库名称
binlog-ignore-db=mysql  
## 开启二进制日志功能,以备Slave作为其它数据库实例的Master时使用
log-bin=mall-mysql-slave1-bin  
## 设置二进制日志使用内存大小(事务)
binlog_cache_size=1M  
## 设置使用的二进制日志格式(mixed,statement,row)
binlog_format=mixed  
## 二进制日志过期清理时间。默认值为0,表示不自动清理。
expire_logs_days=7  
## 跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。
## 如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致
slave_skip_errors=1062  
## relay_log配置中继日志
relay_log=mall-mysql-relay-bin  
## log_slave_updates表示slave将复制事件写进自己的二进制日志
log_slave_updates=1  
## slave设置为只读(具有super权限的用户除外)
read_only=1

8. Reinicie la instancia esclava después de modificar la configuración.

docker restart mysql-slave

9. Verifique el estado de sincronización maestro-esclavo en la base de datos maestra

[root@centos100 conf]# docker exec -it mysql-master /bin/bash
root@b58afbb1ac1a:/# mysql -uroot -p
Enter password: 
...
mysql> show master status;
+-----------------------+----------+--------------+------------------+-------------------+
| File                  | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set |
+-----------------------+----------+--------------+------------------+-------------------+
| mall-mysql-bin.000001 |      617 |              | mysql            |                   |
+-----------------------+----------+--------------+------------------+-------------------+
1 row in set (0.00 sec)

10. Ingrese al contenedor esclavo mysql

[root@centos100 conf]# docker exec -it mysql-slave /bin/bash
root@ee7d461daf7f:/# mysql -uroot -p
Enter password:

11. Configurar la replicación maestro-esclavo en la base de datos esclava

change master to master_host='宿主机ip', master_user='slave', master_password='123456', master_port=3307, master_log_file='mall-mysql-bin.000001', master_log_pos=617, master_connect_retry=30;

主从复制命令参数说明
master_host:主数据库的IP地址;
master_port:主数据库的运行端口;
master_user:在主数据库创建的用于同步数据的用户账号;
master_password:在主数据库创建的用于同步数据的用户密码;
master_log_file:指定从数据库要复制数据的日志文件,通过查看主数据的状态,获取File参数;
master_log_pos:指定从数据库从哪个位置开始复制数据,通过查看主数据的状态,获取Position参数;
master_connect_retry:连接失败重试的时间间隔,单位为秒。

12. Verifique el estado de sincronización maestro-esclavo en la base de datos esclava

show slave status\G;

13. Habilite la sincronización maestro-esclavo en la base de datos esclava

mysql> start slave;
Query OK, 0 rows affected (0.01 sec)

执行这个命令之前,在12步时可以看到
         Slave_IO_Running: No
         Slave_SQL_Running: No
当执行成功后
         Slave_IO_Running: Yes

14. Verifique el estado de la base de datos esclava y descubra que se ha sincronizado
15. Prueba de replicación maestro-esclavo

El anfitrión crea bibliotecas y tablas.

mysql> create database db01;
Query OK, 1 row affected (0.00 sec)

mysql> use db01;
Database changed
mysql> create table t1(id int,name varchar(12));
Query OK, 0 rows affected (0.00 sec)
mysql> insert into t1 values (1,'zhangsan');
Query OK, 1 row affected (0.01 sec)

mysql> select * from t1;
+------+----------+
| id   | name     |
+------+----------+
|    1 | zhangsan |
+------+----------+
1 row in set (0.00 sec)

maquina esclava

mysql> use db01;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from t1;
+------+----------+
| id   | name     |
+------+----------+
|    1 | zhangsan |
+------+----------+
1 row in set (0.00 sec)

1.2 Instalar el clúster de Redis

Modo de clúster: versión acoplable
Partición de ranura Hash para almacenamiento de datos de mil millones de niveles

1.2.1 Pregunta de la entrevista: Es necesario almacenar en caché de 100 a 200 millones de datos. ¿Cómo debería diseñarse
? Es 100% imposible utilizar una sola máquina. Debe ser almacenamiento distribuido. ¿Cómo implementarlo con redis?

1. 哈希取余分区
	1.1 2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:
hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
	1.2 优点:
	简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。
	1.3 缺点:
	原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。
某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

2. 一致性哈希算法分区
	2.1 是什么
	一致性Hash算法背景:一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。
	2.2 能干啥
	提出一致性Hash解决方案。目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系
	2.3 三大步骤
	2.3.1 一致性哈希环
	一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。
	2.3.2 节点映射
	将集群中各个IP节点映射到环上的某一个位置。将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeABCD,经过IP地址的哈希函数计算(hash(ip))
	2.3.3 key落到服务器的落键规则
	当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。如我们有Object AObject BObject CObject D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
	2.4 优点
	2.4.1 解决了一致性哈希算法的容错性
	假设Node C宕机,可以看到此时对象ABD不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是BC之间的数据,并且这些数据会转移到D进行存储。
	2.4.2 解决了一致性哈希算法的扩展性
	数据量增加了,需要增加一台节点NodeXX的位置在AB之间,那收到影响的也就是AX之间的数据,重新把AX的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。
	2.5 缺点
	Hash环的数据倾斜问题
	一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题
	2.6 总结
	为了在节点数目发生改变时尽可能少的迁移数据
	将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。
	而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。  
	优点:
	加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
	缺点 :
	数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。

3. 哈希槽分区
	3.1 为什么会出现
	解决一致性哈希算法的数据倾斜问题
	哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。
	3.2 能干什么
	解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。
	槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。
	哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。
	3.3 有多少个hash槽
	一个集群只能有16384个槽,编号0-163830-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。
	3.4 哈希槽计算
	Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之ABNode2, key之C落在Node3

1.2.2 Pasos de configuración del clúster tres maestros y tres esclavos

1. Cree 6 nuevas instancias de contenedor acoplable

docker run -d	#创建并运行docker容器实例
--name redis-node-1	#容器名字
--net host	#使用宿主机的ip端口,默认
--privileged=true	#获取宿主机的用户权限
-v /app/redis/share/redis-node-1:/data	#容器卷  宿主机地址:docker内部地址 
redis #redis镜像
--cluster-enabled yes	#开启redis集群
--appendonly yes	#开启持久化
--port 6381	#redis端口


docker run -d --name redis-node-1 --net host --privileged=true -v /app/redis/share/redis-node-1:/data redis --cluster-enabled yes --appendonly yes --port 6381

docker run -d --name redis-node-2 --net host --privileged=true -v /app/redis/share/redis-node-2:/data redis --cluster-enabled yes --appendonly yes --port 6382

docker run -d --name redis-node-3 --net host --privileged=true -v /app/redis/share/redis-node-3:/data redis --cluster-enabled yes --appendonly yes --port 6383

docker run -d --name redis-node-4 --net host --privileged=true -v /app/redis/share/redis-node-4:/data redis --cluster-enabled yes --appendonly yes --port 6384

docker run -d --name redis-node-5 --net host --privileged=true -v /app/redis/share/redis-node-5:/data redis --cluster-enabled yes --appendonly yes --port 6385

docker run -d --name redis-node-6 --net host --privileged=true -v /app/redis/share/redis-node-6:/data redis --cluster-enabled yes --appendonly yes --port 6386

2. Ingrese al contenedor redis-node-1 y cree una relación de clúster para 6 máquinas.

//注意,进入docker容器后才能执行一下命令,且注意自己的真实IP地址
redis-cli --cluster create 192.168.75.100:6381 192.168.75.100:6382 192.168.75.100:6383 192.168.75.100:6384 192.168.75.100:6385 192.168.75.100:6386 --cluster-replicas 1

--cluster-replicas 1 表示为每个master创建一个slave节点
[root@centos100 ~]# docker exec -it redis-node-1 /bin/bash
root@centos100:/data# redis-cli --cluster create 192.168.75.100:6381 192.168.75.100:6382 192.168.75.100:6383 192.168.75.100:6384 192.168.75.100:6385 192.168.75.100:6386 --cluster-replicas 1
>>> Performing hash slots allocation on 6 nodes...
Master[0] -> Slots 0 - 5460
Master[1] -> Slots 5461 - 10922
Master[2] -> Slots 10923 - 16383
Adding replica 192.168.75.100:6385 to 192.168.75.100:6381
Adding replica 192.168.75.100:6386 to 192.168.75.100:6382
Adding replica 192.168.75.100:6384 to 192.168.75.100:6383
>>> Trying to optimize slaves allocation for anti-affinity
[WARNING] Some slaves are in the same host as their master
M: 08df796c1908646c721bf261d01604cfcde0bdec 192.168.75.100:6381
slots:[0-5460] (5461 slots) master
M: c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 192.168.75.100:6382
slots:[5461-10922] (5462 slots) master
M: 1f37845789f52b4713200bbc4bc89dbad1fdfdf5 192.168.75.100:6383
slots:[10923-16383] (5461 slots) master
S: 16da45b459ba780926566fcda4407cf0798f01ca 192.168.75.100:6384
replicates c71627fc6d20b9ca61fca76d1fd7e0adab02ec48
S: 7ea18ad035fd83d1e6828022832915ffd7c1d89c 192.168.75.100:6385
replicates 1f37845789f52b4713200bbc4bc89dbad1fdfdf5
S: 1240de80a446da678036b886d11beddee60c6ba3 192.168.75.100:6386
replicates 08df796c1908646c721bf261d01604cfcde0bdec
Can I set the above configuration? (type 'yes' to accept): yes
>>> Nodes configuration updated
>>> Assign a different config epoch to each node
>>> Sending CLUSTER MEET messages to join the cluster
Waiting for the cluster to join
....
>>> Performing Cluster Check (using node 192.168.75.100:6381)
M: 08df796c1908646c721bf261d01604cfcde0bdec 192.168.75.100:6381
slots:[0-5460] (5461 slots) master
1 additional replica(s)
S: 16da45b459ba780926566fcda4407cf0798f01ca 192.168.75.100:6384
slots: (0 slots) slave
replicates c71627fc6d20b9ca61fca76d1fd7e0adab02ec48
M: c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 192.168.75.100:6382
slots:[5461-10922] (5462 slots) master
1 additional replica(s)
S: 1240de80a446da678036b886d11beddee60c6ba3 192.168.75.100:6386
slots: (0 slots) slave
replicates 08df796c1908646c721bf261d01604cfcde0bdec
S: 7ea18ad035fd83d1e6828022832915ffd7c1d89c 192.168.75.100:6385
slots: (0 slots) slave
replicates 1f37845789f52b4713200bbc4bc89dbad1fdfdf5
M: 1f37845789f52b4713200bbc4bc89dbad1fdfdf5 192.168.75.100:6383
slots:[10923-16383] (5461 slots) master
1 additional replica(s)
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.
root@centos100:/data# 

3. Enlace a 6381 como punto de entrada para ver el estado del clúster.

root@centos100:/data# redis-cli -p 6381
127.0.0.1:6381> cluster info
cluster_state:ok
cluster_slots_assigned:16384
cluster_slots_ok:16384
cluster_slots_pfail:0
cluster_slots_fail:0
cluster_known_nodes:6	#6个节点
cluster_size:3
cluster_current_epoch:6
cluster_my_epoch:1
cluster_stats_messages_ping_sent:188
cluster_stats_messages_pong_sent:198
cluster_stats_messages_sent:386
cluster_stats_messages_ping_received:193
cluster_stats_messages_pong_received:188
cluster_stats_messages_meet_received:5
cluster_stats_messages_received:386
127.0.0.1:6381> cluster nodes
16da45b459ba780926566fcda4407cf0798f01ca 192.168.75.100:6384@16384 slave c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 0 1653649433792 2 connected
c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 192.168.75.100:6382@16382 master - 0 1653649433000 2 connected 5461-10922
1240de80a446da678036b886d11beddee60c6ba3 192.168.75.100:6386@16386 slave 08df796c1908646c721bf261d01604cfcde0bdec 0 1653649430699 1 connected
7ea18ad035fd83d1e6828022832915ffd7c1d89c 192.168.75.100:6385@16385 slave 1f37845789f52b4713200bbc4bc89dbad1fdfdf5 0 1653649432000 3 connected
1f37845789f52b4713200bbc4bc89dbad1fdfdf5 192.168.75.100:6383@16383 master - 0 1653649432777 3 connected 10923-16383
08df796c1908646c721bf261d01604cfcde0bdec 192.168.75.100:6381@16381 myself,master - 0 1653649431000 1 connected 0-5460

#根据输出结果来看 1 -> 6  2 -> 4  3 -> 5
127.0.0.1:6381> 

Insertar descripción de la imagen aquí
1.2.3 Caso de migración de conmutación tolerante a fallas maestro-esclavo
Almacenamiento de lectura y escritura de datos

1、通过exec进入一台redis

[root@centos100 ~]# docker exec -it redis-node-1 /bin/bash
root@centos100:/data# redis-cli -p 6381
127.0.0.1:6381> keys *
(empty array)

2、对6381新增几个key

127.0.0.1:6381> set k1 v1
(error) MOVED 12706 192.168.75.100:6383
127.0.0.1:6381> set k2 v2
OK
127.0.0.1:6381> set k3 v3
OK
127.0.0.1:6381> set k4 v4
(error) MOVED 8455 192.168.75.100:6382
127.0.0.1:6381> 

3. Para evitar fallas en el enrutador, agregue el parámetro -c

root@centos100:/data# redis-cli -p 6381 -c
127.0.0.1:6381> flushall
OK
127.0.0.1:6381> set vi k1
-> Redirected to slot [8048] located at 192.168.75.100:6382
OK
192.168.75.100:6382> set k2 v2
-> Redirected to slot [449] located at 192.168.75.100:6381
OK
192.168.75.100:6381> set k3 v3
OK
192.168.75.100:6381> set k4 v4
-> Redirected to slot [8455] located at 192.168.75.100:6382
OK

4. Ver información del clúster

redis-cli --cluster check 192.168.75.100:6381

1.2.4 Migración y conmutación tolerante a fallas maestro-esclavo
1. Para cambiar entre el maestro 6381 y el esclavo, detenga primero el 6381.

[root@centos100 ~]# docker stop redis-node-1
redis-node-1

2. Verifique la información del clúster nuevamente

[root@centos100 ~]# docker exec -it redis-node-2 /bin/bash
root@centos100:/data# redis-cli -p 6382 -c
127.0.0.1:6382> cluster nodes
1240de80a446da678036b886d11beddee60c6ba3 192.168.75.100:6386@16386 master - 0 1653652908000 7 connected 0-5460
c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 192.168.75.100:6382@16382 myself,master - 0 1653652904000 2 connected 5461-10922
08df796c1908646c721bf261d01604cfcde0bdec 192.168.75.100:6381@16381 master,fail - 1653652828089 1653652822986 1 disconnected
1f37845789f52b4713200bbc4bc89dbad1fdfdf5 192.168.75.100:6383@16383 master - 0 1653652906922 3 connected 10923-16383
7ea18ad035fd83d1e6828022832915ffd7c1d89c 192.168.75.100:6385@16385 slave 1f37845789f52b4713200bbc4bc89dbad1fdfdf5 0 1653652908000 3 connected
16da45b459ba780926566fcda4407cf0798f01ca 192.168.75.100:6384@16384 slave c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 0 1653652908967 2 connected

Insertar descripción de la imagen aquí
3. Restaurar los 3 maestros y 3 esclavos anteriores.

[root@centos100 ~]# docker start redis-node-1
redis-node-1
[root@centos100 ~]# docker exec -it redis-node-1 /bin/bash
root@centos100:/data# redis-cli -p 6381 -c
127.0.0.1:6381> cluster nodes
16da45b459ba780926566fcda4407cf0798f01ca 192.168.75.100:6384@16384 slave c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 0 1653653200093 2 connected
7ea18ad035fd83d1e6828022832915ffd7c1d89c 192.168.75.100:6385@16385 slave 1f37845789f52b4713200bbc4bc89dbad1fdfdf5 0 1653653202126 3 connected
1f37845789f52b4713200bbc4bc89dbad1fdfdf5 192.168.75.100:6383@16383 master - 0 1653653203142 3 connected 10923-16383
c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 192.168.75.100:6382@16382 master - 0 1653653201111 2 connected 5461-10922
1240de80a446da678036b886d11beddee60c6ba3 192.168.75.100:6386@16386 master - 0 1653653200000 7 connected 0-5460
08df796c1908646c721bf261d01604cfcde0bdec 192.168.75.100:6381@16381 myself,slave 1240de80a446da678036b886d11beddee60c6ba3 0 1653653201000 7 connected

Parada 6386

[root@centos100 ~]# docker stop redis-node-6
redis-node-6

Reiniciar 6386

[root@centos100 ~]# docker start redis-node-6
redis-node-6

Ver el estado del clúster

redis-cli --cluster check 192.168.75.100:6381

1.2.5 Caso de expansión maestro-esclavo

1. Cree dos nuevos nodos 6387 y 6388. Inícielos después de la creación y verifique si hay 8 nodos.

docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-7:/data redis --cluster-enabled yes --appendonly yes --port 6387

docker run -d --name redis-node-8 --net host --privileged=true -v /data/redis/share/redis-node-8:/data redis --cluster-enabled yes --appendonly yes --port 6388

2. Ingrese dentro del contenedor 6387

3. Agregue el nodo 6387 recién agregado (ranura vacía) al clúster original como nodo maestro.

Agregue el 6387 recién agregado como nodo maestro al clúster
redis-cli --cluster add-node Mi dirección IP real: 6387 Mi dirección IP real: 6381
6387 es el nuevo nodo 6381 que se agregará como maestro
. Líder en el nodo del clúster original, diga adiós al puerto de 6381 en 6387 y busque organizaciones para unirse al clúster.

redis-cli --cluster add-node 192.168.75.100:6387 192.168.75.100:6381

4. Verifique el estado del clúster por primera vez.

root@centos100:/data# redis-cli --cluster check 192.168.75.100:6381
192.168.75.100:6381 (08df796c...) -> 2 keys | 5461 slots | 1 slaves.
192.168.75.100:6387 (987146b1...) -> 0 keys | 0 slots | 0 slaves.
192.168.75.100:6382 (c71627fc...) -> 2 keys | 5462 slots | 1 slaves.
192.168.75.100:6383 (1f378457...) -> 0 keys | 5461 slots | 1 slaves.
[OK] 4 keys in 4 masters.
0.00 keys per slot on average.
>>> Performing Cluster Check (using node 192.168.75.100:6381)
M: 08df796c1908646c721bf261d01604cfcde0bdec 192.168.75.100:6381
slots:[0-5460] (5461 slots) master
1 additional replica(s)
M: 987146b1eb2e78155b1885312cc5fd92e4155b79 192.168.75.100:6387
slots: (0 slots) master
S: 7ea18ad035fd83d1e6828022832915ffd7c1d89c 192.168.75.100:6385
slots: (0 slots) slave
replicates 1f37845789f52b4713200bbc4bc89dbad1fdfdf5
S: 1240de80a446da678036b886d11beddee60c6ba3 192.168.75.100:6386
slots: (0 slots) slave
replicates 08df796c1908646c721bf261d01604cfcde0bdec
M: c71627fc6d20b9ca61fca76d1fd7e0adab02ec48 192.168.75.100:6382
slots:[5461-10922] (5462 slots) master
1 additional replica(s)
M: 1f37845789f52b4713200bbc4bc89dbad1fdfdf5 192.168.75.100:6383
slots:[10923-16383] (5461 slots) master
1 additional replica(s)
S: 16da45b459ba780926566fcda4407cf0798f01ca 192.168.75.100:6384
slots: (0 slots) slave
replicates c71627fc6d20b9ca61fca76d1fd7e0adab02ec48
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.

5. Reasignar espacios

Comando para reasignar el número de ranura: redis-cli --cluster reshard Dirección IP: número de puerto
Insertar descripción de la imagen aquí
6, verifique la situación del clúster por segunda vez
Insertar descripción de la imagen aquí
7, asigne el nodo esclavo 6388 al nodo maestro 6387

命令:redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID

redis-cli --cluster add-node 192.168.111.147:6388 192.168.111.147:6387 --cluster-slave --cluster-master-id e4781f644d4a4e4d4b4d107157b9ba8144631451-------这个是6387的编号,按照自己实际情况

redis-cli --cluster add-node 192.168.75.100:6388 192.168.75.100:6387 --cluster-slave --cluster-master-id 987146b1eb2e78155b1885312cc5fd92e4155b79

8. Verifique el estado del clúster por tercera vez.


redis-cli --cluster check 192.168.75.100:6381

Insertar descripción de la imagen aquí

1.2.6 Caso de reducción maestro-esclavo
Propósito: 6387 y 6388 fuera de línea

1. Verifique el estado del clúster y obtenga la ID del nodo 6387

aa69bde36b65c2985cadb634ee1616c4e4355717

2. Elimine el número 4 del nodo 6388 del clúster.

Comando: redis-cli --cluster del-node ip: puerto esclavo esclavo 6388 ID de nodo

redis-cli --cluster del-node 192.168.75.100:6388 aa69bde36b65c2985cadb634ee1616c4e4355717

Comprobándolo, puede encontrar que 6388 ha sido eliminado.

redis-cli --cluster check 192.168.75.100:6387

3. Reasigne la ranura 6387. En este ejemplo, todas las ranuras despejadas se asignarán a 6381.

redis-cli --cluster reshard 192.168.75.100:6381

Insertar descripción de la imagen aquí
Insertar descripción de la imagen aquí
4. Verifique el estado del clúster por segunda vez.

redis-cli --cluster check 192.168.75.100:6381

Se asignan 4096 espacios a 6381, que se convierten en 8192 espacios, lo que equivale a los 6381; de lo contrario, deberá ingresarlos 3 veces.

5. Eliminar 6387

Comando: redis-cli --cluster del-node ip: puerto 6387 ID de nodo

redis-cli --cluster del-node 192.168.75.100:6387 987146b1eb2e78155b1885312cc5fd92e4155b79

6. Verifique el estado del clúster por tercera vez.

1.3 Suplemento: configure el contenedor para que se inicie automáticamente en el inicio.
Especifique cuándo se ejecuta para iniciar el contenedor.

docker run -p 3306:3306 --restart=always -d mysql:5.7

Detalles de los valores de parámetros específicos de reinicio:
no, no reinicia el contenedor cuando el contenedor sale;
en caso de falla, solo reinicia el contenedor cuando sale con un estado distinto de 0;
siempre reinicia el contenedor independientemente del estado de salida;

No especificado al crear

docker update --restart=always xxx

Supongo que te gusta

Origin blog.csdn.net/weixin_45817985/article/details/133383962
Recomendado
Clasificación