Diferencias entre versiones HTTP

HTTP1.0

No se puede reutilizar la conexión

HTTP1.0 abre una nueva conexión TCP para cada solicitud

客户端 服务器 TCP三次握手,建立连接 请求 响应 TCP四次挥手,销毁连接 TCP三次握手,建立连接 请求 响应 TCP四次挥手,销毁连接 客户端 服务器

Dado que cada solicitud es una conexión independiente, surgirán los siguientes problemas:

  1. El establecimiento y destrucción de conexiones ocupará los recursos del servidor y del cliente, provocando un desperdicio de recursos de memoria.

  2. El establecimiento y destrucción de conexiones consumirá tiempo, lo que resultará en una pérdida de tiempo de respuesta.

  3. Incapacidad para utilizar completamente el ancho de banda, lo que resulta en un desperdicio de recursos de ancho de banda

    La característica del protocolo TCP es el "inicio lento", es decir, la cantidad de datos transmitidos es pequeña al principio y el pico de transmisión se alcanza después de un período de tiempo. El enfoque anterior provocará la destrucción de una gran cantidad de solicitudes antes de que TCP alcance el pico de transmisión.

bloqueo de cabecera de línea

image-20211027133404730

HTTP1.1

Conexión larga

Para resolver los problemas de HTTP1.0, HTTP1.1 habilita conexiones largas de forma predeterminada , lo que permite que la misma conexión TCP atienda múltiples solicitudes y respuestas.

客户端 服务器 TCP三次握手,建立连接 请求 响应 请求 响应 TCP四次挥手,销毁连接 客户端 服务器

En este caso, múltiples solicitudes y respuestas pueden compartir la misma conexión TCP, lo que no solo reduce el tiempo de protocolo de enlace y saludo de TCP, sino que también aprovecha al máximo la función de "inicio lento" de TCP para utilizar de manera efectiva el ancho de banda.

De hecho, en el último período de HTTP 1.0, aunque no existía un estándar oficial, los desarrolladores gradualmente formaron un consenso:

Siempre que el encabezado de la solicitud contenga Conexión: mantener vivo, significa que el cliente quiere abrir una conexión larga y espera que el servidor no cierre la conexión TCP después de responder. Si el servidor reconoce este comportamiento, se puede mantener la conexión TCP.

Cuando sea necesario, cualquiera de las partes puede cerrar la conexión TCP.

Ampliar conocimientos

Hay tres situaciones principales en las que se cierra una conexión:

  1. El cliente lo establece en una determinada solicitud Connection:close. Después de que el servidor recibe esta solicitud, cierra inmediatamente TCP después de la respuesta.
  2. Cuando no hay ninguna solicitud, el cliente realizará continuamente una detección de latidos en el servidor (generalmente cada segundo). Una vez que se detiene la detección de latidos, el servidor cierra inmediatamente TCP
  3. Cuando no llegan nuevas solicitudes del cliente al servidor durante un tiempo prolongado, el servidor cerrará activamente TCP. El personal de operación y mantenimiento puede configurar este tiempo.

Dado que una conexión TCP puede transportar múltiples respuestas a solicitudes y no se desconectará durante un período de tiempo, esta conexión se denomina conexión larga.

Canalización y bloqueo de cabecera de línea

HTTP 1.1 permite enviar la siguiente solicitud antes de que llegue la respuesta, lo que puede reducir en gran medida el tiempo límite del ancho de banda.

Sin embargo, esto provocará el problema del bloqueo del cabezal de línea.

image-20211026175005607

由于多个请求使用的是同一个TCP连接,服务器必须按照请求到达的顺序进行响应

想一想为什么?

于是,导致了一些后发出的请求,无法在处理完成后响应,产生了等待的时间,而这段时间的带宽可能是空闲的,这就造成了带宽的浪费

队头阻塞虽然发生在服务器,但这个问题的根源是客户端无法知晓服务器的响应是针对哪个请求的。

正是由于存在队头阻塞,我们常常使用下面的手段进行优化:

  • 通过减少文件数量,从而减少队头阻塞的几率

  • 通过开辟多个TCP连接,实现真正的、有缺陷的并行传输

    浏览器会根据情况,为打开的页面自动开启TCP连接,对于同一个域名的连接最多6个

    如果要突破这个限制,就需要把资源放到不同的域中

然而,管道化并非一个成功的模型,它带来的队头阻塞造成非常多的问题,所以现代浏览器默认是关闭这种模式的

HTTP2.0

image-20211027114358656

二进制分帧

HTTP2.0可以允许以更小的单元传输数据,每个传输单元称之为,而每一个请求或响应的完整数据称之为,每个流有自己的编号,每个帧会记录所属的流。

比如,服务器连续接到了客户端的两个请求,一个请求JS、一个请求CSS,两个文件如下:

function a(){
    
    }
function b(){
    
    }
.container{
    
    }
.list{
    
    }

最终形成的帧可能如下

image-20211027111316940

可以看出,每个帧都带了一个头部,记录了流的ID,这样做就能够准确的知道这一帧数据是属于哪个流的。

image-20211027111536553

这样就真正的解决了共享TCP连接时的队头阻塞问题,实现了真正的多路复用

不仅如此,由于传输时是以帧为单元传输的,无论是响应还是请求,都可以实现并发处理,即不同的传输可以交替进行。

由于进行了分帧,还可以设置传输优先级。

头部压缩

HTTP2.0之前,所有的消息头都是以字符的形式完整传输的

可实际上,大部分头部信息都有很多的重复

为了解决这一问题,HTTP2.0使用头部压缩来减少消息头的体积

image-20211027132744018

对于两张表都没有的头部,则使用Huffman编码压缩后进行传输,同时添加到动态表中

服务器推

HTTP2.0允许在客户端没有主动请求的情况下,服务器预先把资源推送给客户端

当客户端后续需要请求该资源时,则自动从之前推送的资源中寻找

面试题

  1. 介绍下 http1.0http1.1http2.0 协议的区别?

    参考答案:

    首先说 http1.0

    它的特点是每次请求和响应完毕后都会销毁 TCP 连接,同时规定前一个响应完成后才能发送下一个请求。这样做有两个问题:

    1. 无法复用连接

      每次请求都要创建新的 TCP 连接,完成三次握手和四次挥手,网络利用率低

    2. 队头阻塞

      如果前一个请求被某种原因阻塞了,会导致后续请求无法发送。

    然后是 http1.1

    http1.1 是 http1.0 的改进版,它做出了以下改进:

    1. 长连接

      http1.1 允许在请求时增加请求头connection:keep-alive,这样便允许后续的客户端请求在一段时间内复用之前的 TCP 连接

    2. 管道化

      基于长连接的基础,管道化可以不等第一个请求响应继续发送后面的请求,但响应的顺序还是按照请求的顺序返回。

    3. 缓存处理

      新增响应头 cache-control,用于实现客户端缓存。

    4. 断点传输

      在上传/下载资源时,如果资源过大,将其分割为多个部分,分别上传/下载,如果遇到网络故障,可以从已经上传/下载好的地方继续请求,不用从头开始,提高效率

    最后是 http2.0

    http2.0 进一步优化了传输效率,它主要有以下改进:

    1. 二进制分帧

      将传输的消息分为更小的二进制帧,每帧有自己的标识序号,即便被随意打乱也能在另一端正确组装

    2. 多路复用

      基于二进制分帧,在同一域名下所有访问都是从同一个 tcp 连接中走,并且不再有队头阻塞问题,也无须遵守响应顺序

    3. 头部压缩

      http2.0 通过字典的形式,将头部中的常见信息替换为更少的字符,极大的减少了头部的数据量,从而实现更小的传输量

    4. 服务器推

      http2.0 允许服务器直接推送消息给客户端,无须客户端明确的请求

  2. 为什么 HTTP1.1 不能实现多路复用(腾讯)

    参考答案:

    HTTP/1.1 的传输单元是整个响应文本,因此接收方必须按序接收完所有的内容后才能接收下一个传输单元,否则就会造成混乱。而HTTP2.0的传输单元更小,是一个二进制帧,而且每个帧有针对所属流的编号,这样即便是不同的流交替传输,也可以很容易区分出每个帧是属于哪个流的。

  3. 简单讲解一下 http2 的多路复用(网易)

    在 HTTP/2 中,有两个非常重要的概念,分别是帧(frame)和流(stream)。 帧代表着最小的数据单位,每个帧会标识出该帧属于哪个流,流也就是多个帧组成的数据流。 多路复用,就是在一个 TCP 连接中可以存在多条流。换句话说,也就是可以发送多个请求,对端可以通过帧中的标识知道属于哪个请求。通过这个技术,可以避免 HTTP 旧版本中的队头阻塞问题,极大的提高传输性能。

  4. http1.1 是如何复用 tcp 连接的?(网易)

    客户端请求服务器时,通过请求行告诉服务器使用的协议是 http1.1,同时在请求头中附带connection:keep-alive(为保持兼容),告诉服务器这是一个长连接,后续请求可以重复使用这一次的 TCP 连接。

    这样做的好处是减少了三次握手和四次挥手的次数,一定程度上提升了网络利用率。但由于 http1.1 不支持多路复用,响应顺序必须按照请求顺序抵达客户端,不能真正实现并行传输,因此在 http2.0 出现之前,实际项目中往往把静态资源,比如图片,分发到不同域名下的资源服务器,以便实现真正的并行传输。

  5. http1.0、http2.0、http3.0 之间的区别

    参考答案:

    http1.0

    每次请求和响应完毕后都会销毁 TCP 连接,同时规定前一个响应完成后才能发送下一个请求。这样做有两个问题:

    1. 无法复用连接

      每次请求都要创建新的 TCP 连接,完成三次握手和四次挥手,网络利用率低

    2. 队头阻塞

      如果前一个请求被某种原因阻塞了,会导致后续请求无法发送。

    http2.0

    http2.0 优化了传输效率,它主要有以下改进:

    1. 二进制分帧

      将传输的消息分为更小的二进制帧,每帧有自己的标识序号,即便被随意打乱也能在另一端正确组装

    2. 多路复用

      基于二进制分帧,在同一域名下所有访问都是从同一个 tcp 连接中走,并且不再有队头阻塞问题,也无须遵守响应顺序

    3. 头部压缩

      http2.0 通过字典的形式,将头部中的常见信息替换为更少的字符,极大的减少了头部的数据量,从而实现更小的传输量

    4. 服务器推

      http2.0 允许服务器直接推送消息给客户端,无须客户端明确的请求

    http3.0

    http3.0 目前还在草案阶段,它完全抛弃了 TCP 协议,转而使用 UDP 协议,是为了进一步提升性能。

    虽然 http2.0 进行了大量的优化,但它无法摆脱 TCP 协议本身的问题,比如建立连接时间长、对头阻塞问题等等。

    为了保证传输的可靠性,http3.0 使用了 QUIC 协议。

Supongo que te gusta

Origin blog.csdn.net/qq_53461589/article/details/132940894
Recomendado
Clasificación