# 단계별 학습 51 마이크로 컨트롤러#가변 발전 및 도트 매트릭스 LED#아님.6

1. 변수의 범위와 저장 범주를 마스터하세요.

지역 변수

함수 내부에 선언된 변수는 함수 내에서만 유효하고 함수 외부에서는 사용할 수 없으며 이를 지역변수(Local Variable)라고 합니다.

전역 변수

함수 외부에서 선언된 변수는 전역변수이며, 소스 프로그램은 하나 이상의 함수를 포함할 수 있으며, 전역변수의 범위는 함수가 선언된 위치부터 프로그램이 끝날 때까지이다.

전역 변수의 부작용

1) 기능의 독립성을 줄입니다. 기능을 수정하면 다른 기능에 영향을 미칠 수 있습니다.

2) 기능의 재사용에 도움이 되지 않는 기능의 다양성을 줄입니다.

3) 프로그램의 명료성이 떨어진다 함수 실행 시마다 전역 변수의 값이 변경될 수 있어 매 순간 전역 변수의 값을 명확하게 판단할 수 없게 된다.

4) 전역 변수는 메모리 단위를 영구적으로 점유합니다.

원칙: 지역 변수를 사용할 수 있다면 전역 변수를 사용하지 마세요.

전역변수와 지역변수는 동일한 이름을 가지며, 지역변수는 지역변수 범위 내에서 유효하다.

자동변수

static 키워드로 수정되지 않은 경우 함수의 지역 변수는 동적 변수라고도 하는 자동 변수입니다.

정적 변수

전역변수는 모두 정적변수이며, 지역변수를 static 키워드로 수정하면 역시 정적변수이다.


2. 도트 매트릭스의 표시 원리와 도트 매트릭스 애니메이션의 표시 원리를 이해한다.

도트 매트릭스의 디스플레이 원리는 여러 개의 작은 LED 조명이 함께 결합되고 다른 작은 LED 조명이 켜져 다른 패턴을 형성하는 것입니다. 도트 매트릭스의 애니메이션 디스플레이는 실제로 다양한 패턴의 하이 프레임 변화입니다. .


3. 도트 매트릭스 디스플레이 I❤U를 아래쪽으로 이동하는 프로그램을 독립적으로 완료합니다.

clude <REGX52.H>
sbit addr0 = P1^0;
sbit addr1 = P1^1;
sbit addr2 = P1^2;
sbit addr3 = P1^3;
sbit ENLED = P1^4;
unsigned char code LedBuff[] = {
0xC3,0xE7,0xE7,0xE7,0xE7,0xE7,0xC3,0xFF,
0xE7,0xC3,0x81,0x00,0x00,0x99,0xFF,0xC3,
0x81,0x99,0x99,0x99,0x99,0x99,0xFF,0xFF,
};

unsigned int flag1s = 0;
unsigned int cnt = 0,i = 0;

void main()
{
	ENLED = 0;
	addr3 = 0;
	TMOD = 0x01;
	TH0 = 0xfc;
	TL0 = 0x67;
	TR0 = 1;
  while(1) 
{
 if(TF0 == 1)
 {
	 TF0 = 0;
	 cnt++;
	 if(cnt >= 5)
	 {
	 cnt = 0;
	flag1s++;
	 }
 }
	 P0 = 0xff;
		 switch (i)
	{
		    case 0 :addr0 = 0;addr1 = 0;addr2 = 0;P0 = LedBuff[flag1s + 7];i++;break;
				case 1 :addr0 = 1;addr1 = 0;addr2 = 0;P0 = LedBuff[flag1s + 6];i++;break;
				case 2 :addr0 = 0;addr1 = 1;addr2 = 0;P0 = LedBuff[flag1s + 5];i++;break;
				case 3 :addr0 = 1;addr1 = 1;addr2 = 0;P0 = LedBuff[flag1s + 4];i++;break;
				case 4 :addr0 = 0;addr1 = 0;addr2 = 1;P0 = LedBuff[flag1s + 3];i++;break;
				case 5 :addr0 = 1;addr1 = 0;addr2 = 1;P0 = LedBuff[flag1s + 2];i++;break;
				case 6 :addr0 = 0;addr1 = 1;addr2 = 1;P0 = LedBuff[flag1s + 1];i++;break;
				case 7 :addr0 = 1;addr1 = 1;addr2 = 1;P0 = LedBuff[flag1s + 0];i=0;break;
		default:break;
	 }
	if(flag1s >= 16)
	{
	flag1s = 0;
	}
 	
}
}


4. 도트 매트릭스 디스플레이 I❤U를 오른쪽으로 이동하는 프로그램을 독립적으로 완료합니다.

#include <REGX52.H>
sbit addr0 = P1^0;
sbit addr1 = P1^1;
sbit addr2 = P1^2;
sbit addr3 = P1^3;
sbit ENLED = P1^4;
unsigned char code LedBuff[] = {
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    0x7D,0x01,0x01,0x7D,0xFF,0xFF,0xE3,0xC1,
    0x81,0x03,0x03,0x81,0xC1,0xE3,0xFF,0xFF,
    0x81,0x01,0x3F,0x3F,0x3F,0x01,0x81,0xFF,
    0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
};

unsigned int flag1s = 0;
unsigned int cnt = 0,i = 0;

void main()
{
	ENLED = 0;
	addr3 = 0;
	TMOD = 0x01;
	TH0 = 0xfc;
	TL0 = 0x67;
	TR0 = 1;
  while(1) 
{
 if(TF0 == 1)
 {
	 TF0 = 0;
	 cnt++;
	 if(cnt >= 5)
	 {
	 cnt = 0;
	flag1s++;
	 }
 }
	 P0 = 0xff;
		 switch (i)
	{
		    case 0 :addr0 = 0;addr1 = 0;addr2 = 0;P0 = LedBuff[flag1s + 7];i++;break;
				case 1 :addr0 = 1;addr1 = 0;addr2 = 0;P0 = LedBuff[flag1s + 6];i++;break;
				case 2 :addr0 = 0;addr1 = 1;addr2 = 0;P0 = LedBuff[flag1s + 5];i++;break;
				case 3 :addr0 = 1;addr1 = 1;addr2 = 0;P0 = LedBuff[flag1s + 4];i++;break;
				case 4 :addr0 = 0;addr1 = 0;addr2 = 1;P0 = LedBuff[flag1s + 3];i++;break;
				case 5 :addr0 = 1;addr1 = 0;addr2 = 1;P0 = LedBuff[flag1s + 2];i++;break;
				case 6 :addr0 = 0;addr1 = 1;addr2 = 1;P0 = LedBuff[flag1s + 1];i++;break;
				case 7 :addr0 = 1;addr1 = 1;addr2 = 1;P0 = LedBuff[flag1s + 0];i=0;break;
		default:break;
	 }
	if(flag1s >= 32)
	{
	flag1s = 0;
	}
 	
}
}


5. 도트 매트릭스를 사용하여 9에서 0까지 카운트다운 카드 표시를 만듭니다.

#include <REGX52.H>
sbit addr0 = P1^0;
sbit addr1 = P1^1;
sbit addr2 = P1^2;
sbit addr3 = P1^3;
sbit ENLED = P1^4;
unsigned char code LedBuff[][8] = {
0xFF,0xE7,0xE7,0xE7,0xE7,0xE7,0xE7,0xFF,
	0xFF,0xE3,0xDF,0xDF,0xEF,0xF7,0xC3,0xFF,
0xFF,0xC3,0xDF,0xDF,0xE3,0xDF,0xDF,0xC3,
	0xFF,0xEF,0xE7,0xEB,0xC1,0xEF,0xEF,0xEF,
0xFF,0xC3,0xFB,0xC3,0xDF,0xDF,0xDF,0xE3,
	0xFF,0xC3,0xDF,0xDF,0xC3,0xDB,0xDB,0xC3,
0xFF,0xC3,0xDF,0xEF,0xF7,0xF7,0xF7,0xF7,
	0xFF,0xC3,0xDB,0xDB,0xE7,0xDB,0xDB,0xC3,
0xFF,0xC3,0xDB,0xDB,0xC3,0xDF,0xDF,0xEF,
	0xFF,0xE7,0xDB,0xDB,0xDB,0xDB,0xDB,0xE7,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
	0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
};

unsigned int flag1s = 0;
unsigned int cnt = 0,i = 0;

void main()
{
	ENLED = 0;
	addr3 = 0;
	TMOD = 0x01;
	TH0 = 0xfc;
	TL0 = 0x67;
	TR0 = 1;
  while(1) 
{
 if(TF0 == 1)
 {
	 TF0 = 0;
	 cnt++;
	 if(cnt >= 10)
	 {
	 cnt = 0;
	flag1s++;
	 }
 }
	 P0 = 0xff;
		 switch (i)
	{
		    case 0 :addr0 = 0;addr1 = 0;addr2 = 0;P0 = LedBuff[flag1s][0];i++;break;
				case 1 :addr0 = 1;addr1 = 0;addr2 = 0;P0 = LedBuff[flag1s][1];i++;break;
				case 2 :addr0 = 0;addr1 = 1;addr2 = 0;P0 = LedBuff[flag1s][2];i++;break;
				case 3 :addr0 = 1;addr1 = 1;addr2 = 0;P0 = LedBuff[flag1s][3];i++;break;
				case 4 :addr0 = 0;addr1 = 0;addr2 = 1;P0 = LedBuff[flag1s][4];i++;break;
				case 5 :addr0 = 1;addr1 = 0;addr2 = 1;P0 = LedBuff[flag1s][5];i++;break;
				case 6 :addr0 = 0;addr1 = 1;addr2 = 1;P0 = LedBuff[flag1s][6];i++;break;
				case 7 :addr0 = 1;addr1 = 1;addr2 = 1;P0 = LedBuff[flag1s][7];i=0;break;
		default:break;
	 }
	if(flag1s >= 10)
	{
	flag1s = 0;
	}
 	
}
}


6. 주행등, 디지털 튜브 및 도트 매트릭스의 동시 표시를 실현해 보십시오.

#include <REGX52.H>
sbit addr0 = P1^0;
sbit addr1 = P1^1;
sbit addr2 = P1^2;
sbit addr3 = P1^3;
sbit ENLED = P1^4;
unsigned int i = 0;

void main()
{
	EA = 1;
	ENLED = 0;
	TMOD = 0x01;
	TH0 = 0xfc;
	TL0 = 0x67;
	ET0 = 1;
	TR0 = 1;
  while(1) 
{
 
}	
}
void InterruptTimer0() interrupt 1
{
	TH0 = 0xfc;
	TL0 = 0x67;
	P0 = 0xff;
	switch (i)
	{
		    case 0 :addr3 = 0;addr0 = 0;addr1 = 0;addr2 = 0;P0 = 0;i++;break;
				case 1 :addr3 = 0;addr0 = 1;addr1 = 0;addr2 = 0;P0 = 0;i++;break;
				case 2 :addr3 = 0;addr0 = 0;addr1 = 1;addr2 = 0;P0 = 0;i++;break;
				case 3 :addr3 = 0;addr0 = 1;addr1 = 1;addr2 = 0;P0 = 0;i++;break;
				case 4 :addr3 = 0;addr0 = 0;addr1 = 0;addr2 = 1;P0 = 0;i++;break;
				case 5 :addr3 = 0;addr0 = 1;addr1 = 0;addr2 = 1;P0 = 0;i++;break;
				case 6 :addr3 = 0;addr0 = 1;addr1 = 0;addr2 = 1;P0 = 0;i++;break;
				case 7 :addr3 = 0;addr0 = 1;addr1 = 0;addr2 = 1;P0 = 0;i++;break;
		
				case 8 :addr3 = 1;addr0 = 0;addr1 = 0;addr2 = 0;P0 = 0;i++;break;
				case 9 :addr3 = 1;addr0 = 1;addr1 = 0;addr2 = 0;P0 = 0;i++;break;
				case 10 :addr3 = 1;addr0 =0;addr1 = 1;addr2 = 0;P0 = 0;i++;break;
				case 11 :addr3 = 1;addr0 = 1;addr1 = 1;addr2 = 0;P0 = 0;i++;break;
				case 12 :addr3 = 1;addr0 = 0;addr1 = 0;addr2 = 1;P0 = 0;i++;break;
				case 13 :addr3 = 1;addr0 = 1;addr1 = 0;addr2 = 1;P0 = 0;i++;break;
		
				case 14 :addr3 = 1;addr0 = 0;addr1 = 1;addr2 = 1;P0 = 0;i=0;break;
		default:break;
	}
	}

Supongo que te gusta

Origin blog.csdn.net/2301_77479336/article/details/132845026
Recomendado
Clasificación