El proceso de medición de ViewGroup

En el último artículo, hablamos sobre el proceso de medición de View. En este artículo hablamos sobre el proceso de medición de ViewGroup. Sabemos que para ViewGroup, no solo se mide a sí mismo, sino que también atraviesa el elemento de medida del elemento secundario. Pero el método onMeasure no está definido en ViewGroup, pero sí define el método MeasureChildren.Echemos un vistazo a este método:
 

  protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
        final int size = mChildrenCount;
        final View[] children = mChildren;
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
    }

Veamos qué hace este código. Recorre los elementos secundarios y llama al método MeasureChild, pasando la vista secundaria como parámetro:

  protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        final LayoutParams lp = child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }

Aquí, primero llame a getLayoutParams para obtener el atributo LayoutParams del subelemento, luego obtenga la especificación de medida del subelemento y llame al método de medida del subelemento para medir. Lo que está escrito en el método getChildMeasureSpec:

 public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
        int specMode = MeasureSpec.getMode(spec);
        int specSize = MeasureSpec.getSize(spec);

        int size = Math.max(0, specSize - padding);

        int resultSize = 0;
        int resultMode = 0;

        switch (specMode) {
        // Parent has imposed an exact size on us
        case MeasureSpec.EXACTLY:
            if (childDimension >= 0) {
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size. So be it.
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent has imposed a maximum size on us
        case MeasureSpec.AT_MOST:
            if (childDimension >= 0) {
                // Child wants a specific size... so be it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size, but our size is not fixed.
                // Constrain child to not be bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent asked to see how big we want to be
        case MeasureSpec.UNSPECIFIED:
            if (childDimension >= 0) {
                // Child wants a specific size... let them have it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size... find out how big it should
                // be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size.... find out how
                // big it should be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            }
            break;
        }
        //noinspection ResourceType
        return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
    }

El primer parámetro que recibe este método es parentMeasureSpec. Es decir, el atributo MeasureSpec del elemento secundario se obtiene de acuerdo con el modo MeasureSpec del contenedor principal combinado con el atributo LayoutParams del elemento secundario. Una cosa a tener en cuenta es que si el atributo MeasureSpec del contenedor principal es AT_MOST y el atributo LayoutParams del elemento secundario es WRAP_CONTENT, entonces el código anterior:

else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }

Descubrimos que el atributo MeasureSpec del elemento secundario también es AT_MOST. El valor de su tamaño de especificación es el tamaño de especificación del contenedor principal menos el valor de relleno. En otras palabras, esto es lo mismo que establecer la propiedad LayoutParams del elemento secundario en match_parent. Para resolver este problema. Debe especificar el ancho y el alto predeterminados cuando el atributo LayoutParams es wrap_content. ViewGroup no proporciona un método onMeasure, pero permite que sus subclases implementen sus propios métodos de medición. El motivo es que ViewGroup tiene diferentes requisitos de diseño, que no se pueden unificar. A continuación, veamos el proceso de medición de una subclase LinerLayout de ViewGroup. Ahora echemos un vistazo a su método onMeasure. el código se muestra a continuación:

  @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        if (mOrientation == VERTICAL) {
            measureVertical(widthMeasureSpec, heightMeasureSpec);
        } else {
            measureHorizontal(widthMeasureSpec, heightMeasureSpec);
        }
    }

La lógica de este método parece muy simple. Primero, si se determina que está en la dirección vertical, se llama al método de medidaVertical. De lo contrario, se llama al método de medidaHorizontal. Echemos un vistazo al método de medidaVertical:

 void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
        mTotalLength = 0;
        int maxWidth = 0;
        int childState = 0;
        int alternativeMaxWidth = 0;
        int weightedMaxWidth = 0;
        boolean allFillParent = true;
        float totalWeight = 0;

        final int count = getVirtualChildCount();

        final int widthMode = MeasureSpec.getMode(widthMeasureSpec);
        final int heightMode = MeasureSpec.getMode(heightMeasureSpec);

        boolean matchWidth = false;
        boolean skippedMeasure = false;

        final int baselineChildIndex = mBaselineAlignedChildIndex;
        final boolean useLargestChild = mUseLargestChild;

        int largestChildHeight = Integer.MIN_VALUE;
        int consumedExcessSpace = 0;

        int nonSkippedChildCount = 0;

        // See how tall everyone is. Also remember max width.
        for (int i = 0; i < count; ++i) {
            final View child = getVirtualChildAt(i);
            if (child == null) {
                mTotalLength += measureNullChild(i);
                continue;
            }

            if (child.getVisibility() == View.GONE) {
               i += getChildrenSkipCount(child, i);
               continue;
            }

            nonSkippedChildCount++;
            if (hasDividerBeforeChildAt(i)) {
                mTotalLength += mDividerHeight;
            }

            final LayoutParams lp = (LayoutParams) child.getLayoutParams();

            totalWeight += lp.weight;

            final boolean useExcessSpace = lp.height == 0 && lp.weight > 0;
            if (heightMode == MeasureSpec.EXACTLY && useExcessSpace) {
                // Optimization: don't bother measuring children who are only
                // laid out using excess space. These views will get measured
                // later if we have space to distribute.
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
                skippedMeasure = true;
            } else {
                if (useExcessSpace) {
                    // The heightMode is either UNSPECIFIED or AT_MOST, and
                    // this child is only laid out using excess space. Measure
                    // using WRAP_CONTENT so that we can find out the view's
                    // optimal height. We'll restore the original height of 0
                    // after measurement.
                    lp.height = LayoutParams.WRAP_CONTENT;
                }

                // Determine how big this child would like to be. If this or
                // previous children have given a weight, then we allow it to
                // use all available space (and we will shrink things later
                // if needed).
                final int usedHeight = totalWeight == 0 ? mTotalLength : 0;
                measureChildBeforeLayout(child, i, widthMeasureSpec, 0,
                        heightMeasureSpec, usedHeight);

                final int childHeight = child.getMeasuredHeight();
                if (useExcessSpace) {
                    // Restore the original height and record how much space
                    // we've allocated to excess-only children so that we can
                    // match the behavior of EXACTLY measurement.
                    lp.height = 0;
                    consumedExcessSpace += childHeight;
                }

                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
                       lp.bottomMargin + getNextLocationOffset(child));

                if (useLargestChild) {
                    largestChildHeight = Math.max(childHeight, largestChildHeight);
                }
            }

            /**
             * If applicable, compute the additional offset to the child's baseline
             * we'll need later when asked {@link #getBaseline}.
             */
            if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1)) {
               mBaselineChildTop = mTotalLength;
            }

            // if we are trying to use a child index for our baseline, the above
            // book keeping only works if there are no children above it with
            // weight.  fail fast to aid the developer.
            if (i < baselineChildIndex && lp.weight > 0) {
                throw new RuntimeException("A child of LinearLayout with index "
                        + "less than mBaselineAlignedChildIndex has weight > 0, which "
                        + "won't work.  Either remove the weight, or don't set "
                        + "mBaselineAlignedChildIndex.");
            }

            boolean matchWidthLocally = false;
            if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT) {
                // The width of the linear layout will scale, and at least one
                // child said it wanted to match our width. Set a flag
                // indicating that we need to remeasure at least that view when
                // we know our width.
                matchWidth = true;
                matchWidthLocally = true;
            }

            final int margin = lp.leftMargin + lp.rightMargin;
            final int measuredWidth = child.getMeasuredWidth() + margin;
            maxWidth = Math.max(maxWidth, measuredWidth);
            childState = combineMeasuredStates(childState, child.getMeasuredState());

            allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
            if (lp.weight > 0) {
                /*
                 * Widths of weighted Views are bogus if we end up
                 * remeasuring, so keep them separate.
                 */
                weightedMaxWidth = Math.max(weightedMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);
            } else {
                alternativeMaxWidth = Math.max(alternativeMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);
            }

            i += getChildrenSkipCount(child, i);
        }

        if (nonSkippedChildCount > 0 && hasDividerBeforeChildAt(count)) {
            mTotalLength += mDividerHeight;
        }

        if (useLargestChild &&
                (heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED)) {
            mTotalLength = 0;

            for (int i = 0; i < count; ++i) {
                final View child = getVirtualChildAt(i);
                if (child == null) {
                    mTotalLength += measureNullChild(i);
                    continue;
                }

                if (child.getVisibility() == GONE) {
                    i += getChildrenSkipCount(child, i);
                    continue;
                }

                final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams)
                        child.getLayoutParams();
                // Account for negative margins
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + largestChildHeight +
                        lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
            }
        }

        // Add in our padding
        mTotalLength += mPaddingTop + mPaddingBottom;

        int heightSize = mTotalLength;

        // Check against our minimum height
        heightSize = Math.max(heightSize, getSuggestedMinimumHeight());

        // Reconcile our calculated size with the heightMeasureSpec
        int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
        heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
        // Either expand children with weight to take up available space or
        // shrink them if they extend beyond our current bounds. If we skipped
        // measurement on any children, we need to measure them now.
        int remainingExcess = heightSize - mTotalLength
                + (mAllowInconsistentMeasurement ? 0 : consumedExcessSpace);
        if (skippedMeasure
                || ((sRemeasureWeightedChildren || remainingExcess != 0) && totalWeight > 0.0f)) {
            float remainingWeightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight;

            mTotalLength = 0;

            for (int i = 0; i < count; ++i) {
                final View child = getVirtualChildAt(i);
                if (child == null || child.getVisibility() == View.GONE) {
                    continue;
                }

                final LayoutParams lp = (LayoutParams) child.getLayoutParams();
                final float childWeight = lp.weight;
                if (childWeight > 0) {
                    final int share = (int) (childWeight * remainingExcess / remainingWeightSum);
                    remainingExcess -= share;
                    remainingWeightSum -= childWeight;

                    final int childHeight;
                    if (mUseLargestChild && heightMode != MeasureSpec.EXACTLY) {
                        childHeight = largestChildHeight;
                    } else if (lp.height == 0 && (!mAllowInconsistentMeasurement
                            || heightMode == MeasureSpec.EXACTLY)) {
                        // This child needs to be laid out from scratch using
                        // only its share of excess space.
                        childHeight = share;
                    } else {
                        // This child had some intrinsic height to which we
                        // need to add its share of excess space.
                        childHeight = child.getMeasuredHeight() + share;
                    }

                    final int childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
                            Math.max(0, childHeight), MeasureSpec.EXACTLY);
                    final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
                            mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin,
                            lp.width);
                    child.measure(childWidthMeasureSpec, childHeightMeasureSpec);

                    // Child may now not fit in vertical dimension.
                    childState = combineMeasuredStates(childState, child.getMeasuredState()
                            & (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT));
                }

                final int margin =  lp.leftMargin + lp.rightMargin;
                final int measuredWidth = child.getMeasuredWidth() + margin;
                maxWidth = Math.max(maxWidth, measuredWidth);

                boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY &&
                        lp.width == LayoutParams.MATCH_PARENT;

                alternativeMaxWidth = Math.max(alternativeMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);

                allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;

                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() +
                        lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
            }

            // Add in our padding
            mTotalLength += mPaddingTop + mPaddingBottom;
            // TODO: Should we recompute the heightSpec based on the new total length?
        } else {
            alternativeMaxWidth = Math.max(alternativeMaxWidth,
                                           weightedMaxWidth);


            // We have no limit, so make all weighted views as tall as the largest child.
            // Children will have already been measured once.
            if (useLargestChild && heightMode != MeasureSpec.EXACTLY) {
                for (int i = 0; i < count; i++) {
                    final View child = getVirtualChildAt(i);
                    if (child == null || child.getVisibility() == View.GONE) {
                        continue;
                    }

                    final LinearLayout.LayoutParams lp =
                            (LinearLayout.LayoutParams) child.getLayoutParams();

                    float childExtra = lp.weight;
                    if (childExtra > 0) {
                        child.measure(
                                MeasureSpec.makeMeasureSpec(child.getMeasuredWidth(),
                                        MeasureSpec.EXACTLY),
                                MeasureSpec.makeMeasureSpec(largestChildHeight,
                                        MeasureSpec.EXACTLY));
                    }
                }
            }
        }

        if (!allFillParent && widthMode != MeasureSpec.EXACTLY) {
            maxWidth = alternativeMaxWidth;
        }

        maxWidth += mPaddingLeft + mPaddingRight;

        // Check against our minimum width
        maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());

        setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
                heightSizeAndState);

        if (matchWidth) {
            forceUniformWidth(count, heightMeasureSpec);
        }
    }

Este código tiene trescientas líneas, que es bastante. Pero el principio no es difícil El proceso general es que mTotalLength se define para almacenar la altura de LinerLayout en la dirección vertical. Luego recorra los subelementos y calcule la altura de cada subelemento por separado de acuerdo con el modo MeasureSpec. Si es wrap_content, agregue la altura de cada elemento secundario y la altura vertical del margen y asígnelo a mTotalLength. Finalmente, agregue el valor de padding en la dirección vertical. Si la altura del diseño se establece en macth_parent o un valor específico, es lo mismo que el proceso de medición de Vista.

Supongo que te gusta

Origin blog.csdn.net/howlaa/article/details/128651019
Recomendado
Clasificación