Poligonizar un campo escalar

原文:Poligonizar un campo escalar (Marching Cubes)

También conocido como: "Contorneado 3D", "Cubos de marcha", "Reconstrucción de superficies"

Escrito por Paul Bourke
Mayo de 1994

Basado en tablas de Cory Gene Bloyd junto con código fuente de ejemplo adicional marchingsource.cpp
Una tabla alternativa de Geoffrey Heller.
rchandra.zip : Clases de C++ aportadas por Raghavendra Chandrashekara.
Código fuente de OpenGL , volumen de muestra: cell.gz (antiguo)
volexample.zip : un ejemplo que muestra cómo llamar a Polygonise, incluido un conjunto de datos de MRI de muestra.
Ejemplo de Qt/OpenGL mejorado (2018) cortesía del Dr. Klaus Miltenberger.

Este documento describe un algoritmo para crear una representación de superficie poligonal de una isosuperficie de un campo escalar 3D. Un nombre común para este tipo de problema es el llamado algoritmo de "cubos en marcha". Combina la simplicidad con la alta velocidad, ya que funciona casi en su totalidad en tablas de búsqueda.

Existen muchas aplicaciones para este tipo de técnica, dos muy comunes son:

  • Reconstrucción de una superficie a partir de conjuntos de datos volumétricos médicos. Por ejemplo, las exploraciones de resonancia magnética dan como resultado un volumen 3D de muestras en los vértices de una malla 3D normal.

  • Creación de un contorno 3D de un campo escalar matemático. En este caso, la función se conoce en todas partes, pero se muestrea en los vértices de una cuadrícula 3D normal.

Solución

El problema fundamental es formar una aproximación de facetas a una isosuperficie a través de un campo escalar muestreado en una cuadrícula 3D rectangular. Dada una celda de cuadrícula definida por sus vértices y valores escalares en cada vértice, es necesario crear facetas planas que representen mejor la isosuperficie a través de esa celda de cuadrícula. Es posible que la isosuperficie no pase a través de la celda de la cuadrícula, puede cortar cualquiera de los vértices o puede atravesarla de varias formas más complicadas. Cada posibilidad se caracterizará por el número de vértices que tienen valores por encima o por debajo de la isosuperficie. Si un vértice está por encima de la isosuperficie y un vértice adyacente está por debajo de la isosuperficie, entonces sabemos que la isosuperficie corta el borde entre estos dos vértices. La posición en la que corta el borde se interpolará linealmente,

La convención de indexación para vértices y aristas utilizada en el algoritmo se muestra a continuación.

Si, por ejemplo, el valor en el vértice 3 está por debajo del valor de la isosuperficie y todos los valores en todos los demás vértices estaban por encima del valor de la isosuperficie, entonces crearíamos una faceta triangular que corta los bordes 2, 3 y 11. La posición exacta de la los vértices de la faceta triangular dependen de la relación del valor de la isosuperficie con los valores en los vértices 3-2, 3-0, 3-7 respectivamente.

Lo que hace que el algoritmo sea "difícil" es el gran número (256) de combinaciones posibles y la necesidad de derivar una combinación de facetas coherente para cada solución, de modo que las facetas de las celdas de cuadrícula adyacentes se conecten correctamente.

La primera parte del algoritmo usa una tabla (edgeTable) que asigna los vértices debajo de la isosuperficie a los bordes que se cruzan. Se forma un índice de 8 bits donde cada bit corresponde a un vértice.

   cubeindex = 0;
   if (grid.val[0] < isolevel) cubeindex |= 1;
   if (grid.val[1] < isolevel) cubeindex |= 2;
   if (grid.val[2] < isolevel) cubeindex |= 4;
   if (grid.val[3] < isolevel) cubeindex |= 8;
   if (grid.val[4] < isolevel) cubeindex |= 16;
   if (grid.val[5] < isolevel) cubeindex |= 32;
   if (grid.val[6] < isolevel) cubeindex |= 64;
   if (grid.val[7] < isolevel) cubeindex |= 128;

Buscar la tabla de bordes devuelve un número de 12 bits, cada bit correspondiente a un borde, 0 si el borde no está cortado por la isosuperficie, 1 si el borde está cortado por la isosuperficie. Si no se corta ninguno de los bordes, la tabla devuelve un 0, esto ocurre cuando cubeindex es 0 (todos los vértices por debajo de la isosuperficie) o 0xff (todos los vértices por encima de la isosuperficie).

Usando el ejemplo anterior donde solo el vértice 3 estaba debajo de la isosuperficie, cubeindex sería igual a 0000 1000 u 8. edgeTable[8] = 1000 0000 1100. Esto significa que la isosuperficie interseca a los bordes 2, 3 y 11.

Los puntos de intersección ahora se calculan por interpolación lineal. Si P1 y P2 son los vértices de un borde de corte y V1 y V2 son los valores escalares en cada vértice, el punto de intersección P viene dado por

P = P1 + (isovalor - V1) (P2 - P1) / (V2 - V1)

La última parte del algoritmo consiste en formar las facetas correctas a partir de las posiciones en las que la isosuperficie se cruza con los bordes de la celda de la cuadrícula. Nuevamente se usa una tabla (triTable) que esta vez usa el mismo cubeindex pero permite que la secuencia de vértices se busque tantas facetas triangulares sean necesarias para representar la isosuperficie dentro de la celda de la cuadrícula. Hay como máximo 5 facetas triangulares necesarias.

Volviendo a nuestro ejemplo, en el paso anterior calculamos los puntos de intersección a lo largo de los bordes 2, 3 y 11. El octavo elemento en triTable es
{3, 11, 2, -1, -1, -1, -1, -1 , -1, -1, -1, -1, -1, -1, -1, -1},
Este es un ejemplo particularmente simple, tenga la seguridad de que las combinaciones de facetas no son tan obvias para muchos de los casos en el mesa.

Otro ejemplo

Digamos que los vértices 0 y 3 están debajo de la isosuperficie. cubeindex será entonces 0000 1001 == 9. La novena entrada en egdeTable es 905hex == 1001 0000 0101, lo que significa que se cortan los bordes 11,8,2 y 0, por lo que calculamos los vértices de la intersección de la isosuperficie con esos bordes.
A continuación, 9 en la triTable es 0, 11, 2, 8, 11, 0. Esto corresponde a 2 facetas triangulares, una entre la intersección de los bordes 0 11 y 2. La otra entre las intersecciones a lo largo de los bordes 8 11 y 0.

Resolución de cuadrícula

Un control muy deseable cuando se poligonaliza un campo donde los valores son conocidos o pueden interpolarse en cualquier parte del espacio es la resolución de la cuadrícula de muestreo. Esto permite generar un curso o una aproximación precisa a la isosuperficie dependiendo de la suavidad requerida y/o la potencia de procesamiento disponible para mostrar la superficie. El siguiente ejemplo es de dos "moléculas bobby" según lo especificado por Blinn, generadas en diferentes tamaños de cuadrícula.

Código fuente

typedef struct {
   XYZ p[3];
} TRIANGLE;

typedef struct {
   XYZ p[8];
   double val[8];
} GRIDCELL;

/*
   Given a grid cell and an isolevel, calculate the triangular
   facets required to represent the isosurface through the cell.
   Return the number of triangular facets, the array "triangles"
   will be loaded up with the vertices at most 5 triangular facets.
	0 will be returned if the grid cell is either totally above
   of totally below the isolevel.
*/
int Polygonise(GRIDCELL grid,double isolevel,TRIANGLE *triangles)
{
   int i,ntriang;
   int cubeindex;
   XYZ vertlist[12];

int edgeTable[256]={
0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0   };
int triTable[256][16] =
{
   
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
{1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}};

   /*
      Determine the index into the edge table which
      tells us which vertices are inside of the surface
   */
   cubeindex = 0;
   if (grid.val[0] < isolevel) cubeindex |= 1;
   if (grid.val[1] < isolevel) cubeindex |= 2;
   if (grid.val[2] < isolevel) cubeindex |= 4;
   if (grid.val[3] < isolevel) cubeindex |= 8;
   if (grid.val[4] < isolevel) cubeindex |= 16;
   if (grid.val[5] < isolevel) cubeindex |= 32;
   if (grid.val[6] < isolevel) cubeindex |= 64;
   if (grid.val[7] < isolevel) cubeindex |= 128;

   /* Cube is entirely in/out of the surface */
   if (edgeTable[cubeindex] == 0)
      return(0);

   /* Find the vertices where the surface intersects the cube */
   if (edgeTable[cubeindex] & 1)
      vertlist[0] =
         VertexInterp(isolevel,grid.p[0],grid.p[1],grid.val[0],grid.val[1]);
   if (edgeTable[cubeindex] & 2)
      vertlist[1] =
         VertexInterp(isolevel,grid.p[1],grid.p[2],grid.val[1],grid.val[2]);
   if (edgeTable[cubeindex] & 4)
      vertlist[2] =
         VertexInterp(isolevel,grid.p[2],grid.p[3],grid.val[2],grid.val[3]);
   if (edgeTable[cubeindex] & 8)
      vertlist[3] =
         VertexInterp(isolevel,grid.p[3],grid.p[0],grid.val[3],grid.val[0]);
   if (edgeTable[cubeindex] & 16)
      vertlist[4] =
         VertexInterp(isolevel,grid.p[4],grid.p[5],grid.val[4],grid.val[5]);
   if (edgeTable[cubeindex] & 32)
      vertlist[5] =
         VertexInterp(isolevel,grid.p[5],grid.p[6],grid.val[5],grid.val[6]);
   if (edgeTable[cubeindex] & 64)
      vertlist[6] =
         VertexInterp(isolevel,grid.p[6],grid.p[7],grid.val[6],grid.val[7]);
   if (edgeTable[cubeindex] & 128)
      vertlist[7] =
         VertexInterp(isolevel,grid.p[7],grid.p[4],grid.val[7],grid.val[4]);
   if (edgeTable[cubeindex] & 256)
      vertlist[8] =
         VertexInterp(isolevel,grid.p[0],grid.p[4],grid.val[0],grid.val[4]);
   if (edgeTable[cubeindex] & 512)
      vertlist[9] =
         VertexInterp(isolevel,grid.p[1],grid.p[5],grid.val[1],grid.val[5]);
   if (edgeTable[cubeindex] & 1024)
      vertlist[10] =
         VertexInterp(isolevel,grid.p[2],grid.p[6],grid.val[2],grid.val[6]);
   if (edgeTable[cubeindex] & 2048)
      vertlist[11] =
         VertexInterp(isolevel,grid.p[3],grid.p[7],grid.val[3],grid.val[7]);

   /* Create the triangle */
   ntriang = 0;
   for (i=0;triTable[cubeindex][i]!=-1;i+=3) {
      triangles[ntriang].p[0] = vertlist[triTable[cubeindex][i  ]];
      triangles[ntriang].p[1] = vertlist[triTable[cubeindex][i+1]];
      triangles[ntriang].p[2] = vertlist[triTable[cubeindex][i+2]];
      ntriang++;
   }

   return(ntriang);
}

/*
   Linearly interpolate the position where an isosurface cuts
   an edge between two vertices, each with their own scalar value
*/
XYZ VertexInterp(isolevel,p1,p2,valp1,valp2)
double isolevel;
XYZ p1,p2;
double valp1,valp2;
{
   double mu;
   XYZ p;

   if (ABS(isolevel-valp1) < 0.00001)
      return(p1);
   if (ABS(isolevel-valp2) < 0.00001)
      return(p2);
   if (ABS(valp1-valp2) < 0.00001)
      return(p1);
   mu = (isolevel - valp1) / (valp2 - valp1);
   p.x = p1.x + mu * (p2.x - p1.x);
   p.y = p1.y + mu * (p2.y - p1.y);
   p.z = p1.z + mu * (p2.z - p1.z);

   return(p);
}

Se ha sugerido que la interpolación debe manejarse como se muestra aquí , ya que esto resuelve un problema de pequeñas grietas en la isosuperficie.

Descripción general de Matthew Ward

Resumen

Marching Cubes es un algoritmo para renderizar isosuperficies en datos volumétricos. La noción básica es que podemos definir un vóxel (cubo) por los valores de píxel en las ocho esquinas del cubo. Si uno o más píxeles de un cubo tienen valores menores que el isovalor especificado por el usuario, y uno o más tienen valores mayores que este valor, sabemos que el vóxel debe contribuir con algún componente de la isosuperficie. Al determinar qué bordes del cubo intersecta la isosuperficie, podemos crear parches triangulares que dividen el cubo entre regiones dentro de la isosuperficie y regiones fuera. Al conectar los parches de todos los cubos en el límite de la isosuperficie, obtenemos una representación de la superficie.

Detalles del algoritmo

Hay dos componentes principales de este algoritmo. El primero es decidir cómo definir la sección o secciones de superficie que cortan un cubo individual. Si clasificamos cada esquina por debajo o por encima del isovalor, hay 256 configuraciones posibles de clasificaciones de esquinas. Dos de estos son triviales; donde todos los puntos están dentro o fuera del cubo no contribuye a la isosuperficie. Para todas las demás configuraciones, necesitamos determinar dónde, a lo largo de cada borde del cubo, se cruza la isosuperficie y usar estos puntos de intersección de borde para crear uno o más parches triangulares para la isosuperficie.

Si tiene en cuenta las simetrías, en realidad solo hay 14 configuraciones únicas en las 254 posibilidades restantes. Cuando solo hay una esquina menos que el isovalor, esto forma un solo triángulo que se cruza con los bordes que se encuentran en esta esquina, con el parche normal mirando hacia afuera de la esquina. Obviamente, hay 8 configuraciones relacionadas de este tipo (por ejemplo, para la configuración 2, es posible que deba modificar el mapa de colores para ver el plano entre las esferas/píxeles). Al invertir lo normal obtenemos 8 configuraciones que tienen 7 esquinas menos que el isovalor. Sin embargo, no los consideramos realmente únicos. Para configuraciones con 2 esquinas menos que el isovalor, hay 3 configuraciones únicas (por ejemplo, para la configuración 12), dependiendo de si las esquinas pertenecen a la misma arista, pertenecen a la misma cara del cubo, o están colocados en diagonal uno con respecto al otro. Para configuraciones con 3 esquinas menos que el valor iso, hay nuevamente 3 configuraciones únicas (por ejemplo, para la configuración 14), dependiendo de si hay 0, 1 o 2 bordes compartidos (2 bordes compartidos le dan una forma de 'L'). Hay 7 configuraciones únicas cuando tiene 4 esquinas menos que el valor iso, dependiendo de si hay 0, 2, 3 (3 variantes en este), o 4 bordes compartidos (por ejemplo, para la configuración 30; nuevamente, es posible que deba ajustar el colores para ver el triángulo de la esfera/píxel interior aislado (lejos).

Cada una de las configuraciones no triviales da como resultado que se agreguen entre 1 y 4 triángulos a la isosuperficie. Los vértices reales en sí mismos se pueden calcular mediante interpolación a lo largo de los bordes o, por defecto, su ubicación en el medio del borde. Las ubicaciones interpoladas obviamente le brindarán mejores cálculos de sombreado y superficies más suaves.

Ahora que podemos crear parches de superficie para un solo vóxel, podemos aplicar este proceso a todo el volumen. Podemos procesar el volumen en losas, donde cada losa se compone de 2 rebanadas de píxeles. Podemos tratar cada cubo de forma independiente o podemos propagar intersecciones de bordes entre cubos que comparten los bordes. Este intercambio también se puede hacer entre losas adyacentes, lo que aumenta un poco el almacenamiento y la complejidad, pero ahorra tiempo de cálculo. El intercambio de información de borde/vértice también da como resultado un modelo más compacto y más susceptible al sombreado interpolado.

Determinación de normales en vértices de caras triangulares

A menudo es necesario crear normales para cada vértice de las caras triangulares con fines de renderizado uniforme. Una forma de hacer esto después de crear las facetas es promediar las normales de todas las caras que comparten un vértice de triángulo. A continuación se muestra el resultado suavizado a la derecha, la imagen de la izquierda tiene la única normal para la faceta aplicada a cada uno de sus vértices. El siguiente modelo es de un tipo particular de neurona capturada desde un microscopio confocal.

Sin vértices normales (OpenGL)

Normales de vértice (OpenGL)

Un enfoque común es en cada vértice usar un promedio ponderado de las normales de los polígonos que comparten el vértice. El peso es el inverso del área del polígono, por lo que los polígonos pequeños tienen mayor peso. La idea es que los polígonos pequeños pueden aparecer en regiones de gran curvatura superficial.

Ejemplo 2

El papel original de Siggraph calcula las normales en los vértices interpolando las normales en los vértices del cubo. Estas normales de vértice de cubo se calculan utilizando diferencias centrales de los datos volumétricos.

Sin vértices normales (PovRay)

Normales de vértice (PovRay)

Referencias

Lorensen, WE y Cline, HE, Marching Cubes: un algoritmo de reconstrucción de superficies 3D de alta resolución, Computer Graphics, vol. 21, No. 4, pp 163-169 (Proc. de SIGGRAPH), 1987.

Watt, A. y Watt, M., Técnicas avanzadas de animación y representación, Addison-Wesley, 1992.

Poligonizar un campo escalar usando tetraedros

Escrito por Paul Bourke
junio de 1997

Contribución de Dávid Tóth: DavidToth.zip

Introducción

Este documento describe un algoritmo para crear una representación de superficie poligonal de una isosuperficie a través de un campo escalar 3D. Está estrechamente relacionado con el llamado algoritmo de "cubo en marcha", excepto en ese caso, la estructura de muestreo fundamental es un cubo, mientras que aquí es un tetraedro.

Método

El espacio se muestrea en los vértices de una malla 3D rectangular. Cada celda de malla se divide en 6 tetraedros y se pasa a la rutina de isosuperficie de tetraedro que se presenta al final de este documento. Tenga en cuenta que este es el enfoque utilizado aquí, igualmente se podría muestrear directamente en la malla tetraédrica.

Tenga en cuenta que los bordes del tetraedro se alinean con los de las celdas de caja adyacentes, hay un método para dividir la caja en 5 tetraedros que no tiene esta propiedad.

La aproximación de las facetas planas a la isosuperficie se calcula para cada tetraedro de forma independiente. Los vértices de las facetas se determinan interpolando linealmente donde la isosuperficie corta los bordes del tetraedro.

Hay 8 casos diferentes, 7 se ilustran a continuación. Los círculos huecos y rellenos en los vértices del tetraedro indican que los vértices están en diferentes lados de la isosuperficie. El caso no ilustrado es donde todos los vértices están por encima o por debajo de la isosuperficie, no se generan facetas en esta situación.

notas

  • Esta técnica no sufre las ambigüedades de los algoritmos tradicionales de los cubos de marcha.

  • Dado que se trata de un muestreo discreto, es posible que se pierdan partes de la isosuperficie si varía dentro de una celda de caja. Este es un problema estándar en cualquier conjunto de datos de muestreo discreto, se deben cumplir los criterios de Nyquist.

  • Si la orientación de las facetas es importante (hacia la derecha o hacia la izquierda), entonces los pares de casos que se tratan de la misma manera anterior deben tratarse por separado. Las facetas de cada par tendrán los mismos vértices, pero se ordenarán de manera diferente dependiendo de si el "interior" del objeto poligonalizado tiene valores altos o bajos.

  • El código fuente se proporciona en C estándar (simple).

     

Referencias

W.Lorensen, H.Cline. Marching Cubes: un algoritmo de construcción de superficies 3D de alta resolución. Gráficos por computadora, 21 (4): 163-169, julio de 1987

BA Payne, AWToga. Funciones cerebrales de mapeo de superficies en modelos 3D. IEEE Computer Graphics and Applications, 10 (2) 41-53, febrero de 1990

J. Bloomenthal. Poligonización de Superficies Implícitas. Diseño geométrico asistido por computadora, 5(4) 341-355, noviembre de 1988

A.Doi, A.Koide. Un método eficiente de triangulación de superficies equivalentes mediante el uso de celdas tetraédricas. Comunicación de transacciones IEICE, Elec. información Sistema, E74(1) 214-224, enero de 1991

A. Gueziec, R. Hummel. Explotación de la extracción de superficies trianguladas mediante descomposición tetraédrica. IEEE Transactions on Visualization and Computer Graphics, 1 (4) 328-342 Diciembre de 1995

Supongo que te gusta

Origin blog.csdn.net/tangyin025/article/details/128213803
Recomendado
Clasificación