算法 选择排序搬血,堆排序化灵

这是我参与11月更文挑战的第27天,活动详情查看:2021最后一次更文挑战

排序

常见的排序算法

image-20211119082822804

常见排序算法的实现

选择排序 最慢排序(最好理解)所以搬血

基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

直接选择排序

在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换 在剩余的array[i]--array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

image-20211120195032904

上面那个就是选择排序的本质,但是一次就选一个最大或者最小是不是有点浪费,我们一次同时选到最大最小,就是会比传统的选择排序快一倍


我们基本看到上面代码的缺陷就是我们第一个就是最大是时候,最大的就被换走了,而最小的就被换过来了,但是最大的下标还是标记首位置,把最小的换到后面,也就出现了最小的1在后面的现象

解决方法:既然你最大数的下标和begin重合,那最大数被换走的时候,maxi这个下标也要连带着走

image-20211120233139638

实际上下面 才是我第一次写的代码,直接说下次我再也不写装逼的交换了

image-20211120235444317

我来道bug恶心之处 看好了跳跳 5 ^ 5 0 这就是恶心之处,下次再也不装逼了==

数据交换 剥离出来其他函数也会用到 我明明是简洁之人为了一时的高级而忘记了朴素罪过罪过

//数据交换
void Swap(int* pa, int* pb) {
	int tmp = *pa;
	*pa = *pb;
	*pb = tmp;
}
复制代码

选择排序

// 选择排序
void SelectSort(int* a, int n) {
	int begin = 0;
	int end = n - 1;
	while (begin < end){
		//单趟
		//最大数,最小数的下标
		int mini = begin;//这边假设是刚开始的下标
		int maxi = end;  //这边假设是末尾的下标
		int i = 0;
		for (i = begin; i <= end; i++) {
			if (a[i] < a[mini])
				mini = i;
			if (a[i] > a[maxi])
				maxi = i;
		}
		//最小的放前面
		Swap(&a[begin], &a[mini]);
		
		if (begin == maxi)
			//如果最大数就是begin位置的,那么交换的时候最大数连带着下标一起动
			maxi = mini;
		//最大的放后面
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}
}
复制代码

时间复杂度是O(N^2^) 我们的优化不是质的优化,而是量的优化

最好:O(N^2^)

最坏:O(N^2^)

堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是 通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

image-20211121094727004


向下调整函数

//向下调整函数
void AdjustDown(int* a, int n, int parent)
{
	assert(a);
	//创建一个孩子变量,有两个孩子就在这个上加1就行
	int child = parent * 2 + 1;
#if HEAP
	while (child < n)
	{
		//选大孩子
		if (child + 1 < n && a[child] < a[child + 1])
		{
			child++;
		}
		//大的孩子还大于父亲就交换
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
#elif !HEAP
	while (child < n)
	{
		//选小孩子
		if (child + 1 < n && a[child] > a[child + 1])
		{
			child++;
		}
		//小的孩子还小于父亲就交换
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
#endif // HEAP	
}
复制代码

堆排序代码

// 堆排序   我们之前讲过升序建大堆
void HeapSort(int* a, int n) {
	//建堆时间复杂度O(N)
	//建大堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--) {
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	//堆排序时间复杂度O(N*logN)
	while (end>0){
		//交换 把最大的放到后面
		Swap(&a[0], &a[end]);
		//在向下调整
		AdjustDown(a,end,0);
		end--;
	}
}
复制代码

堆排序时间复杂度O(N*logN)

测性能 让你看看什么叫堆

这里我们测性能就用release版本测吧 因为release版本是程序最优状态,每个排序都是最好状态,巅峰打巅峰

1000大小数组 一千

image-20211121113727817

10000大小数组 一万

image-20211121114331200

100000大小数组 十万

image-20211121114552970

1000000大小数组 一百万

image-20211121125949374

10000000大小数组 一千万 我们不带选择,插入玩太拉跨了,我们看看希尔,堆在超大数据面前谁性能更优

image-20211121130941961

性能函数图

image-20211121133907018

代码

Sort.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>

#define HEAP        1

// 排序实现的接口
// 打印数组
extern void PrintArray(int* a, int n);
// 插入排序
extern void InsertSort(int* a, int n);
// 希尔排序
extern void ShellSort(int* a, int n);
//数据交换
extern void Swap(int* pa, int* pb);
// 选择排序
extern void SelectSort(int* a, int n);
//向下调整
extern void AdjustDwon(int* a, int n, int parent);
// 堆排序
extern void HeapSort(int* a, int n);
// 冒泡排序
extern void BubbleSort(int* a, int n);
// 快速排序递归实现
// 快速排序hoare版本
extern int PartSort1(int* a, int left, int right);
// 快速排序挖坑法
extern int PartSort2(int* a, int left, int right);
// 快速排序前后指针法
extern int PartSort3(int* a, int left, int right);
extern void QuickSort(int* a, int left, int right);
// 快速排序 非递归实现
extern void QuickSortNonR(int* a, int left, int right);
// 归并排序递归实现
extern void MergeSort(int* a, int n);
// 归并排序非递归实现
extern void MergeSortNonR(int* a, int n);
// 计数排序
extern void CountSort(int* a, int n);

复制代码

Sort.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Sort.h"

// 打印数组
void PrintArray(int* a, int n) {
	assert(a);
	int i = 0;
	for (i = 0; i < n; i++) {
		printf("%d ", a[i]);
	}
	printf("\n");
}
// 插入排序
void InsertSort(int* a, int n) {
	assert(a);
	int i = 0;
	for (i = 0; i < n - 1; i++)	{
		int end = i;
		int x = a[end+1];
		while (end >= 0) {
			//要插入的数比顺序中的数小就准备挪位置
			if (a[end] > x) {
				a[end + 1] = a[end];
				end--;
			}
			else {
				//插入的数比顺序中的要大就跳出
				break;
			}
		}
		//跳出来两种情况
		//1.end == -1 的时候
		//2.break 的时候
		//把x给end前面一位
		a[end + 1] = x;
	}
}
// 希尔排序
void ShellSort(int* a, int n) {
	//分组
	int gap = n;
	//多次预排序(gap>1)+ 直接插入(gap == 1)
	while (gap>1){
		//gap /= 2;
		//除以三我们知道不一定会过1,所以我们+1让他有一个必过1的条件
		gap = gap / 3 + 1;
		//单组多躺
		int i = 0;
		for (i = 0; i < n - gap; i++) {
		int end = i;
		int x = a[end + gap];
		while (end >= 0) {
			if (a[end] > x) {
				a[end + gap] = a[end];
				//步长是gap
				end -= gap;
			}
			else {
				break;
			}
		}
		a[end + gap] = x;
	}
	}	
}
//数据交换
void Swap(int* pa, int* pb) {
	int tmp = *pa;
	*pa = *pb;
	*pb = tmp;
}
// 选择排序
void SelectSort(int* a, int n) {
	int begin = 0;
	int end = n - 1;
	while (begin < end){
		//单趟
		//最大数,最小数的下标
		int mini = begin;//这边假设是刚开始的下标
		int maxi = end;  //这边假设是末尾的下标
		int i = 0;
		for (i = begin; i <= end; i++) {
			if (a[i] < a[mini])
				mini = i;
			if (a[i] > a[maxi])
				maxi = i;
		}
		//最小的放前面
		Swap(&a[begin], &a[mini]);
		
		if (begin == maxi)
			//如果最大数就是begin位置的,那么交换的时候最大数连带着下标一起动
			maxi = mini;
		//最大的放后面
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}
}
//向下调整函数
void AdjustDown(int* a, int n, int parent)
{
	assert(a);
	//创建一个孩子变量,有两个孩子就在这个上加1就行
	int child = parent * 2 + 1;
#if HEAP
	while (child < n)
	{
		//选大孩子
		if (child + 1 < n && a[child] < a[child + 1])
		{
			child++;
		}
		//大的孩子还大于父亲就交换
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
#elif !HEAP
	while (child < n)
	{
		//选小孩子
		if (child + 1 < n && a[child] > a[child + 1])
		{
			child++;
		}
		//小的孩子还小于父亲就交换
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
#endif // HEAP	
}
// 堆排序   我们之前讲过升序建大堆
void HeapSort(int* a, int n) {
	//建堆时间复杂度O(N)
	//建大堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--) {
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	//堆排序时间复杂度O(N*logN)
	while (end>0){
		//交换 把最大的放到后面
		Swap(&a[0], &a[end]);
		//在向下调整
		AdjustDown(a,end,0);
		end--;
	}
}
复制代码

test.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Sort.h"

// 测试排序的性能对比
void TestOP()
{
	//设置随机起点
	srand(time(NULL));
	//将要创建的数组大小
	const int N = 1000000;
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	for (int i = 0; i < N; ++i)
	{
		//保证两个数组是一样的
		a1[i] = rand();
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
	}
	int begin1 = clock();//开始时间
	//InsertSort(a1, N);
	int end1 = clock();  //结束时间
	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();
	int begin3 = clock();
	//SelectSort(a3, N);
	int end3 = clock();
	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();
	printf("InsertSort:%d\n", end1 - begin1);//结束时间减去开始时间 
	printf("ShellSort:%d\n", end2 - begin2);
	printf("SelectSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n", end4 - begin4);
	free(a1);
	free(a2);
	free(a3);
	free(a4);
}
//测试插入排序
void TestInsertSort() {
	int a[] = { 1,5,3,7,0,9 };
	InsertSort(a, sizeof(a) / sizeof(a[0]));	
	PrintArray(a, sizeof(a) / sizeof(a[0]));
}
//测试希尔排序
void TestShellSort() {
	int a[] = { 9,1,2,5,7,4,8,6,3,5 };
	ShellSort(a, sizeof(a) / sizeof(a[0]));
	PrintArray(a, sizeof(a) / sizeof(a[0]));
}
//测试选择排序
void TestSelectSort() {
	int a[] = { 9,1,2,5,7,4,8,6,3,5 };
	SelectSort(a, sizeof(a) / sizeof(a[0]));
	PrintArray(a, sizeof(a) / sizeof(a[0]));
}
//测试堆排序
void TestHeapSort() {
	int a[] = { 9,1,2,5,7,4,8,6,3,5 };
	HeapSort(a, sizeof(a) / sizeof(a[0]));
	PrintArray(a, sizeof(a) / sizeof(a[0]));
}
int main(){
	//TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	//TestHeapSort();
	TestOP();
	return 0;
}
复制代码

Supongo que te gusta

Origin juejin.im/post/7035176555257004040
Recomendado
Clasificación