PBN draw a large angle turns flying over protected areas

 
Today, out of the sun, although the street is still small, but started feeling not so boring. Circle of friends are concerned about the latest changes in the epidemic outside, many people are opting to study or with the family through this most long Chinese New Year holiday. All radio and television networks in Shaanxi demand during the Spring Festival program is free of charge, call 96766 to register click on it to open (brush drama of choice).
AutoCAD is really a very good tool, but I only recently started to learn to use it. Today we practice drawing a large turning angle of overflight protected areas. We will mimic the picture below:
Yes this is a plan.
First, download the material:
Links: https://pan.baidu.com/s/1LZBOv90jtru_PpLqGOr6sA extraction code: fr5u
Material content:
  1. Wind spiral plug
  2. Point flying, escribed point icon.
Second, the original analysis and parameter calculation
Pictures from front to ICAO 8168 document, is an example of flying over the departure of turning point specified. Preliminary estimates, over point from the end of the runway about 6.8km, to the next waypoint distance of about 18km after the turning point overflight.
Departure segment of PBN, the ARP 56km distance in the range, whether using RNAV1 / 2 or RNP1 specification, the corresponding protection zone parameters are completely identical, are listed below:
Table SID represents Standard Instrument Departure (SID). The proportional relationship in the embodiment of FIG inference, belonging to the leg segment is less than the initial departure flying curve in the 28km.
We use the following parameters of the embodiment of FIG simulation: IAS 405km / h, the slope turns 15 °, the height of 900 m turn, wind speed 56km / h, ATT 1482 meters and 3704 meters width half protected areas.
Turning parameter calculation results are as follows:
=====Turn Parameters=====
IAS = 405 km / h
k = 1.072
TAS = 434.17 km / h
WindSpeed = 56 km/h
Bank Angle = 15 °
DraftAngle = 7.41°
R = 1.25 °/s
Radius = 5535 m
I dump = 12.5 / °
E45 = 561 m
E90 = 1121 m
E135 = 1682 m
E180 = 2243 m
E235 = 2928 m
C6 = (v+w)*6 = 817 m
======= Fly-Over Parameters ======
Earliest Distance: 1482
Latest Distance: -2298.95
规范中对于指定点转弯离场的高度计算,采用指定点距DER(Departure End of Runway离场跑道末端)的距离乘以10%的爬升梯度,再加上DER标高,再加上5米得到。
本例中我们直接以900米作为转弯高度,指定点距离DER 6.8km,反推DER标高为:900-6800*10%-5=215m。实际计算时应从DER标高开始计算转弯高度。
三、放置航路点,绘制标称航迹,绘制初始段保护区
参数准备完毕,可以开始画图了,参考例图,离场直线段距离6.8km,出航段距离约为18km,转弯135度。飞越点之后采用直飞(DF)方式飞向下一点。
绘制内容:
1、绘制一条3000*45m的跑道。
2、以跑道末端为起点,绘制假想的半宽3704米的PBN保护区(图中的深灰色细线)。
3、再以初始宽度300米,每侧15°外扩,绘制离场初始段保护区(图中红色粗斜线)。
4、以飞越转弯点为中心绘制定位容差区,长1482米,宽1852米的矩形。该矩形下方边角被离场初始段保护区剪切掉。
5、在定位容差最晚位置之外再延长一个C容差的距离(6秒钟的飞行距离),本例中为817米。
四、绘制转弯内侧边界
当转弯大于75°以后,应从使保护区范围最大化的最早点开始绘制内侧边界。如下图所示,从左侧最早点连接航段终点,可以确保转弯区最大化。
五、放置风螺旋,绘制最晚标称航迹
打开风螺旋插件,输入相应参数,点击CAD按钮得到风螺旋线图形。
在CAD中插入上一步得到的风螺旋插件,调整方向使之与保护区方向一致。
从航段终点向风螺旋绘制切线,该切线为转弯的最晚标称航迹。
以最晚标称航迹为基准,外扩15度方向向风螺旋作切线,并绘制外扩平行线作为副区外边界。
六、绘制转弯外边界保护区
在各条风螺旋之间绘制公切线,使用fillet命令对风螺旋及公切线进行修剪,得到下面的效果:
七、添加外扩边界,并增加填充效果
使用CAD曲线外扩功能(Offset命令,使用T选项,使外扩螺旋通过左侧最晚点),得到完整的转弯外边界。
填充功能的快捷键为H,图中阴影区域表示转弯保护区的副区。
八、关于风螺旋插件的精确化应用
在大角度转弯的例子中,可以充分发挥风螺旋精确计算的优势,减少手工绘制公切线的误差。具体参考下表来选择风螺旋的角度范围。
对于我们练习的这个例子,顺时针来看,一共有4条风螺旋。
1号风螺旋的实际范围是0°至 90°+DA。
2号风螺旋的实际范围是90°+DA至 180°+DA。
3号风螺旋的实际范围是180°+DA至下一段切线方向。
4号风螺旋的起点至少在180°+DA之后。
了解到这样的计算关系之后,我们可以直接按照需要的范围去添加风螺旋,最后再少量的添加部分切线即可。(目前这部分内容都可以自动化计算了)
精确添加风螺旋之后的效果如下图所示:
添加公切线后的效果:
可以看到,最晚边界外扩15°后的边界线在本例中已经越过了4号风螺旋的公切线范围,也就是说,在本例中4号风螺旋仅用于确定最晚标称航迹,并不直接决定主区范围的大小。
最终的效果如下,与前面的绘制结果相同,只是更精确的指出了风螺旋切点的位置。
未来的保护区绘制应该能够精确说明各段风螺旋的起止点,这是趋势,也是已经被解决了的技术问题。
昨天的推文连写带画一直整到了晚上10点半,今天再来画图就已经快很多了,业精于勤荒于嬉,我们的目标不仅仅是实现手工画图而已,我们想要实现的是飞行程序规范的未来。

Guess you like

Origin www.cnblogs.com/windspiral/p/12238425.html