Fudan University 2019--2020 school year first semester (19) Advanced Algebra I final exam sixth largest Answers

VI (10 points)   provided $ n \, (n> 1 ) $ $ A $ th order square matrix satisfies: and the elements of each row are equal to $ C $, and $ | A | = d \ neq 0 $ test requirements. All $ a $ cofactor sum $ \ sum \ limits_ {i, j = 1} ^ nA_ {ij} $.

Proof a (matrix properties)   provided $ \ alpha = (1,1, \ cdots, 1) '$, by the conditions found $ A \ alpha = c \ alpha $. Since $ A $ array is non-exclusive, so $ c \ neq 0 $ (or by the $ A \ alpha = 0 $ can Release $ \ alpha = 0 $, conflict), then $ A ^ {- 1} \ alpha = c ^ {- 1}. \ alpha $ $ note A ^ * = | A | A ^ {- 1} $, so $ A ^ * \ alpha = | A | A ^ {- 1} \ alpha = \ dfrac {d} {c} \ alpha $, i.e., $ A ^ * $ of elements per row sum is equal to $ \ dfrac {d} {c } $, so $ \ sum \ limits_ {i, j = 1} ^ nA_ {ij} = \ dfrac {nd} {c} $ .

Proof bis (determinant properties)   The determinant $ | A | $ column other than the first column of all $ $ J $ J $ applied to the second column, by the nature of the condition and the available determinant: $$ | A | = \ begin {vmatrix } a_ {11} & \ cdots & c & \ cdots & a_ {1n} \\ a_ {21} & \ cdots & c & \ cdots & a_ {2n} \\ \ vdots & & \ vdots & & \ vdots \\ a_ {n1} & \ cdots & c & \ cdots & a_ {nn} \\ \ end {vmatrix}. $$ right determinant of expanding in the $ J $ columns, have $$ d = c (A_ {1j } + A_ {2j} + \ cdots + A_ {nj}), $$ then $ \ sum \ limits_ {i = 1} ^ nA_ {ij} = \ dfrac {d} {c} $, so $ \ sum \ limits_ {i, j = 1} ^ nA_ {ij} = \ dfrac {nd} {c} $.

Proof tris (determinant template)   using the same white paper with a high generation token 1.32 embodiments, there is $ | A (t) | = | A | + t \ sum \ limits_ {i, j = 1} ^ nA_ {ij} . $ note $ a (- \ dfrac {c } {n}) $ , and the elements of each row are equal to zero, so that it is singular matrix, then $$ 0 = | a (- \ dfrac {c} {n}) | = | A | - \ frac {c} {n} \ sum \ limits_ {i, j = 1} ^ nA_ {ij} = d- \ frac {c} {n} \ sum \ limits_ {i, j = 1} ^ nA_ {ij}, $$ thereby obtain $ \ sum \ limits_ {i, j = 1} ^ nA_ {ij} = \ dfrac {nd} {c} $.

Proof tetrakis (reduced order equation)   provided $ \ alpha = (1,1, \ cdots, 1) '$, by the reduced-order equation or higher substituting Example 1.8 white paper available $$ \ begin {vmatrix} A & \ alpha \\ \ alpha '& 1 \\ \ end {vmatrix} = | a | - \ sum \ limits_ {i, j = 1} ^ nA_ {ij} $$ other hand, the left front $ determinant. all columns added n $ $ n + 1 $ the first column, available $$ | A | - \ sum \ limits_ {i, j = 1} ^ nA_ {ij} = \ begin {vmatrix} A & \ alpha \ \ \ alpha '& 1 \\ \ end {vmatrix} = \ begin {vmatrix} A & (c + 1) \ alpha \\ \ alpha' & n + 1 \\ \ end {vmatrix} = (n + 1) | A | - (c + 1 ) \ sum \ limits_ {i, j = 1} ^ nA_ {ij}, $$ thereby obtain $ \ sum \ limits_ {i, j = 1} ^ nA_ {ij} = \ dfrac {nd} {c} $. $ \ Box $

Note   this problem entirely to make a total of 97 students, 33 who used a Proof; 32 people using certificate Act II; 29 & Three people using certificates; adoption certificate and France 3 (a slightly different form, can be put in the lower right corner 1 into an arbitrary constant) If you go to compare. 19 high-generation I question every Monday 7th title , it is not difficult to find: math problems after appropriate abstract or simplified, often easier to look at the nature of the problem, thus you can be more compact solution or proofs.

Guess you like

Origin www.cnblogs.com/torsor/p/12203661.html