Journal of Proteome Research | Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients (quantitative proteomics cell structures schizophrenia orbitofrontal cortex alkylene) (Interpretation: Wang poly)

Journal Name: Journal of Proteome Research,

Published: (October 2019)

IF3.78

unit:

  1. Federal University of Rio de Janeiro
  2. State University of Campinas
  3. Center for the Neurobiology of Campinas State University
  4. Kala Bo University
  5. University of Munich

 

Species: Human brain orbitofrontal cortex

Art: the iTRAQ labeled non-target relative quantification, SRM targeting relative quantification

 

I. Overview:

The study took 12 cases of schizophrenia patients and 8 healthy control population orbitofrontal cortex (OFC) tissue, by relative quantification iTRAQ labeling and non-target targeting SRM relative quantification, were tissue cells mitochondria, nucleus, and the crude extract proteomics study subcellular structures in the cytoplasm of three categories. In the mitochondria (MIT), the crude nuclear extract (the NUC) and cytoplasmic (CYT) were identified in the 655,1500 and 1591 kinds of proteins. The main detection with calcium imbalance and glutamate, cells of CREB activation signal interference and three axon guidance related biological pathways, simultaneous detection of proteins involved in NF-κB activation signal C3 complement protein associated upregulation. And speculated that activation of NF-κB activation may be associated with schizophrenia patient calcium, glutamate and apoptosis and immune system disorders.

 

Second, the background:

Schizophrenia is a mental functional impairment and social barriers associated with chronic disease. Orbital frontal cortex of the brain is particularly closely associated with cognitive and behavioral disorders, orbital frontal cortex plays a key role in the abnormal emotional responses and social disorder. Although many research groups for orbital frontal cortex, but few involve proteomics study of subcellular structures. Therefore, the study subcellular proteomics research for the orbital frontal cortex, trying to establish the orbital frontal cortex of subcellular proteomics spectrum, and explains the dynamic changes in the structure of schizophrenic illness subcellular level.

 

Three . Experimental design:

 

 

 

Four . Findings:

1. All cells were identified in the 2159 kinds of structural proteins, wherein the MIT 655 Species, NUC 1500 Species, CYT 1591 species. iTRAQ quantitative total protein 1,279 kinds, wherein the MIT 329 species, the NUC 888 species, CYT 948 species specific results shown in Figure 1. All the cellular structures, was significantly up or down at least 50% of the total protein in the 166 kinds of patients, and the use of the SRM γCaMKII, GS, MAPK2, and C3 and the NF-κB family of proteins family were quantified again.

 

 

 FIG. 1, A substructure identified in each cell protein venn FIG. Each B cell substructures individually identified protein biological function. Principal component analysis of the structure of the sub-cell C patients. D subcellular structures protein identification number, the number can be quantified and the number of abnormal regulation.

2.与健康人群相比,病人在MIT中检测到CLTC(重肽网格蛋白)和PPIase A(肽基脯氨酰顺帆异构酶)的下调,两者分别与内吞作用和蛋白质折叠相关;另外检测到11种上调蛋白质,主要涉及柠檬酸循环,呼吸电子传递,线粒体膜组织和脊的形成。上调蛋白中VDAC1(电依赖性阴离子选择通道蛋白1)调节线粒体的凋亡;上调蛋白FAM162A与VDAC1作用,诱发线粒体孔道的通透作用并激发其凋亡;另外Complex III和NipSnap1的上调也指示这细胞凋亡的稳定性被破坏,在氧化环境中,ComplexIII可以激发固有的凋亡通路,NipSnap1涉及钙离子平衡性的破坏,可以激发线粒体的自噬信号。这些结果与之前研究所观察到的大脑相同区域的钙离子代谢异常所激活的凋亡过程相符,见图2。我们在病人中还发现了IF1,Mic19和Mic25的上调;IF1控制线粒体脊的结构并与Mic19和Mic25一同对线粒体脊的结构以及膜的组成起一定作用。

 

 

 图2,MIT中涉及凋亡的主要蛋白。

3.在NUC部分,共有87个蛋白在相对丰度上显著变化,其中APP,S100A1以及PRKCB下调且均与钙离子信号传导以及凋亡相关;另外83种蛋白上调,且其中许多蛋白与凋亡和化学突触传递信号相关。在变化的蛋白中14-3-3蛋白家族值得关注,他们通过磷酸化调节FOXO转录因子,导致细胞质中FOXO与DNA结合的抑制进而无法调节诸如属于NF-κB信号通路的各种基因的转录。FOXO功能的缺失导致了细胞内NF-κB活性的上升。同时,该研究检测到了多种与NF-κB激活相关的核蛋白的上调,比如RhoB和HMGB1。HMGB1通过ERK相关机制激活NF-κB,而该研究利用SRM发现ERK-2在NUC中显著上调,其可作为ERK激活的间接证据。另外,下调的核激酶C也与NF-κB调节相关联,NF-κB具体机制见图3。

 

 图3.NF-κB信号通路

另外,我们发现了许多失调蛋白与化学突出传递相关,其中代表蛋白为γCaMKII,该蛋白在NUC和CYT可通过SRM定量。γCaMKII作为穿梭蛋白与Ca2+/CaM结合,当细胞基质中钙离子浓度上升后,γCaMKII将CaM有胞质转移如细胞核。在NUC部分γCaMKII在病人中显著上调,在CYT部分则无显著差异。但在定量结果中细胞核中CaM有下调的趋势,那怎么理解γCaMKII在细胞核上调的结果呢?之前的研究表明γCaMKII需要287位的Thr磷酸化才会具有对CaM的核传递作用,而该磷酸化需要βCaMKII的作用,而在CYT中我们则发现了βCaMKII的下调。Ma在该问题中解释到,如果没有βCaMKII在287位Thr的磷酸化,虽然对γCaMKII在核中的迁移并无影响但会导致CaM和CREM在核传递激活过程的损伤,CREM激活平衡性的破坏不利于突触可塑性,具体假说见图4。

 

 

 图4.源于γCaMKII的CREB不平衡性假说

NUC中另一类检测的是与谷氨酸盐代谢相关的蛋白,比如GS(谷氨酰胺合成酶)。GS在NUC上调,而在CYT部分GLDH(谷氨酸盐脱氢酶)则显著下调,这些蛋白几乎都位于星形胶质细胞中,该细胞可摄取来自突触间隙的谷氨酸盐并通过GS将其转化为谷氨酰胺,或通过GLDH将其转化为α-酮戊二酸,具体调节方式见图5。在NUC组分中,与谷氨酸盐相关的蛋白EAAT2(兴奋性氨基酸转运体2)发生异常调节,其主要负责谷氨酸盐的摄取。补体系统的蛋白也发生了显著变化,比如CD59糖蛋白的上调,而补体系统的激活也可通过NF-κB信号通路完成。

 

 

 图5.谷氨酸盐代谢的异常调节

 4.在CYT结构中,共定量87中异常调节蛋白,其中大部分在NUC和MIT中上调的蛋白在CYT部分均发生了下调,这些蛋白相关的功能主要在于轴突引导过程,也包括了很多蛋白酶体以及核糖体中的蛋白质。GAP-43(神经调节素)是与轴突引导,神经元生长以及突触塑性相关的蛋白,其在病人组中丰度下调。核糖体蛋白主要参与轴突的生长和mRNA的转录,我们发现负责催化,结合,翻译等功能的核糖体蛋白(RP)的CYT病人中的下调,研究尤其关注了S19和L23。另外泛素蛋白酶体系统(UPS)在CYT中也发生了异常调节。

 

.文章亮点:

1.在精神分裂病人的OFC区域,凋亡通路的激活在疾病中具有重要作用,MIT中促凋亡蛋白VDAC1,FAM162A以及复合物III的上调反应了这一点。

2.在精神分裂病人中,细胞质中βCaMKII丰度的下降影响了γCaMKII在细胞核中的功能,进而导致了Ca2+/CaM穿梭蛋白和CREB激活受损,这与病人的认知障碍具有一定关联。

3.谷氨酸盐代谢的异常显著发生于自身的合成调节以及突触间隙的清除过程,同时细胞质膜损伤也影响了EAAT的调节。

4. NF-κB的激活可能与精神分裂病人谷氨酸盐,钙离子,细胞凋亡以及免疫系统激活的异常调节相关。

5. 该研究对细胞中各个亚结构均进行了蛋白质组学的研究,采用了两种定量方式筛选各个部分的差异蛋白。同时结合大量前人研究成果,蛋白功能以及通路信息充分论证各个组分中各个异常调节蛋白的作用,前后呼应。

 

阅读人:王聚

原文链接:https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.9b00398

DOI:10.1021/acs.jproteome.9b00398

Guess you like

Origin www.cnblogs.com/ilifeiscience/p/12030176.html