Zero points and Lobatto right Jacobi orthogonal polynomials

This discussion is about zero calculation Jacobi orthogonal polynomials, which can search Google Scholar relevant to many scholarly articles. Due to the recent frequent use Jacobi orthogonal polynomials Galerkin-Spectral method, so we put together a number of related skills.

 

Jacobi orthogonal polynomials recurrence formula:

$J_0^{\alpha,\beta}(x)=1$, $\quad J_1^{\alpha,\beta}(x)=\frac12 (\alpha+\beta+2)x+\frac12(\alpha-\beta),$

$J_{n+1}^{\alpha,\beta}(x)=\Big(a_n^{\alpha,\beta}x-b_n^{\alpha,\beta}\Big)J_{n}^{\alpha,\beta}(x)-c_{n}^{\alpha,\beta}J_{n-1}^{\alpha,\beta}(x),\quad n\geq 1.$

among them

$a_n^{\alpha,\beta}=\frac{\big(  2n+\alpha+\beta+1 \big)\big(  2n+\alpha+\beta+2 \big)}{2\big(  n+1 \big)\big(  n+\alpha+\beta+1 \big)},$

$b_n^{\alpha,\beta}=\frac{\big(  \beta^2-\alpha^2 \big)\big(  2n+\alpha+\beta+1 \big)}{2\big(  n+1 \big)\big(  n+\alpha+\beta+1 \big)\big(  2n+\alpha+\beta\big)},$

$c_n^{\alpha,\beta}=\frac{\big(  n+\alpha \big)\big(  n+\beta\big)\big(  2n+\alpha+\beta+2 \big)}{\big(  n+1 \big)\big(  n+\alpha+\beta+1 \big)\big(  2n+\alpha+\beta\big)},$

Guess you like

Origin www.cnblogs.com/xtu-hudongdong/p/12013066.html