Disjoint-set and Kruskal minimum spanning tree algorithm

First, what is the disjoint-set

In computer science, disjoint-set data structure of a tree for consolidation and deal with some problems disjoint sets of queries. There is a joint - lookup algorithm (union-find algorithm) defines two operation times for the data structures:

  • Find: determining which subset of elements belonging. It can be used to determine whether the two elements belong to the same subset.
  • Union: the two subsets and into a collection.

Second, the main operation

  • Initialization: initialize each point where the collection of its own.
for(int i=1;i<=n;i++)
    f[i]=i;
  • Find: Find a set of elements are located, that is the root node.
int find(int x)
{
    while(f[x]!=x)
        x=f[x];
    return x;
}
  • Merge: The two sets of elements where combined into one collection.
void Union(int x1,int x2)
{
    int t1=find(x1);
    int t2=find(x2);
    if(t1!=t2)
        f[t2]=t1;
}

Third, optimization

The above code seems simple, but the time complexity of each find operation is O (H), H is the height of the tree, because we did not do special treatment to the tree, so the tree continues to merge tree may cause a serious imbalance, the worst case each node has only one child node.

Therefore, the find function employed in path compression .

int find(int x)       //查找x元素所在的集合,回溯时压缩路径
{
    if (x != f[x])
    {
        f[x] = find(f[x]); 
        //从x结点搜索到祖先结点所经过的结点都指向该祖先结点
    }         
    return f[x];
}

Fourth, the template title

Luo Gu P3367 [template] disjoint-set

#include<bits/stdc++.h>
using namespace std;
int n,m;
int f[10002];
int find(int x)
{
    if(x!=f[x])
        f[x]=find(f[x]);
    return f[x];
}
void Union(int x1,int x2)
{
    int t1=find(x1);
    int t2=find(x2);
    if(t1!=t2) //祖先不一样 
        f[t2]=t1; //把t2的祖先变为x1的祖先t1 
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        f[i]=i;
    for(int i=0;i<m;i++)
    {
        int z,x,y;
        cin>>z>>x>>y;
        if(z==1)
            Union(x,y); 
        else
        {
            if(find(x)!=find(y))cout<<"N"<<endl;
            else cout<<"Y"<<endl;
        }
    }
    return 0;
}

Fifth, the minimum spanning tree

A connected graph with n vertices of the original image is minimal spanning tree link subgraph, all of the n nodes comprising original image, and there is minimal communication while keeping FIG.

Minimum spanning tree is actually referred to as minimum weight spanning tree.

Kruskal's algorithm

  • The graph all the edges in accordance with weight in ascending order
  • Traversing all edges sorted, if constitute loop, then the edge is added to the collection
  • Until it finds the n-1 sides

Example: busy city

#include<bits/stdc++.h>
using namespace std;
int n,m;
int s,maxm;
int p[100002];
struct node{
    int u;
    int v;
    int c;
}info[100002];

bool cmp(node x1,node x2)
{
    if(x1.c!=x2.c)return x1.c<x2.c;
    else if(x1.u!=x2.u) return x1.u<x2.u;
    else return x1.v<x2.v;
}
int find(int x)       //查找x元素所在的集合,回溯时压缩路径
{
    if (x!=p[x])
    {
        p[x]=find(p[x]);  
    }         
    return p[x];
}
void bcj(int x1,int x2)//把x2并入x1的集合
{
    int t1,t2;//存储祖先节点
    t1=find(x1);
    t2=find(x2);
    if(t1!=t2)p[t2]=t1;
}
int main()
{
    cin>>n>>m;//n就是顶点数,m是边数
    for(int i=1;i<=n;i++)
    {
        p[i]=i;
    }
    for(int i=0;i<m;i++)
    {
        cin>>info[i].u>>info[i].v>>info[i].c;
    }
    sort(info,info+m,cmp);
    for(int i=0;i<m;i++)//遍历所有的边
    {
        if(find(info[i].u)!=find(info[i].v))
        {
            bcj(info[i].u,info[i].v);//把v并入u的集合
            maxm=max(maxm,info[i].c);
        }
    }
    cout<<n-1<<" "<<maxm;
    return 0;
}

Guess you like

Origin www.cnblogs.com/jiyi-conding/p/11795008.html