Number theory [2]

Part 4: congruence

Definition: see here .

Topic 1: About modulo

First push a very simple formula:

$$ab\; \mod c=(a \mod \;c) \;\cdot\; b \mod \;c$$

prove:

  易知 $a=\lfloor \frac{a}{c} \rfloor \cdot c+a \mod c.$

  所以:
$$ab \mod c$$
$$=(\lfloor \frac{a}{c} \rfloor \cdot c \mod \;c\;+\;a \mod c )\;\cdot\; b \mod c$$
$$=0\;+\;a\mod \;c\; \cdot \;b \mod c$$
$$=(a\mod \;c)\; \cdot \;b \mod c.$$

Characterized completely square numbers: Topic 2

① $a^2 \mod 3=0\;\;or\;\;1.$

prove:

  When the $ 3 \ mid a $, apparently $ 3 \ mid a ^ 2 $;

  When $ a \ mod 3 = 1 $, set $ a = 3k + 1 $, $ k $ is an integer, then

$$a^2$$

$$=9k^2+6k+1$$

$$ = 3 (3k ^ 2 + 2k) +1. $$

  Therefore, at this time $ a ^ 2 \ mod 3 = 1 $;

  When $ a \ mod 3 = 2 $, the set $ a = 3k + 2 $, $ k $ is an integer, then

$$a^2$$

$$ = 9k ^ 2 + 12k + 4 $$

$$=3(3k^2+4k+1)+1.$$

  Therefore, at this time $ a ^ 2 \ mod 3 = 1 $.

  In summary, for any integer $ A $, satisfy the above properties.

Guess you like

Origin www.cnblogs.com/zengpeichen/p/11800784.html