Newton generalized binomial theorem

Ordinary Newton binomial theorem in high school before, is the time when the power of positive integers, but sometimes need to use cases (such as generating function) is not necessarily a positive integer, and so will need scores or negative, so Newton generalized binomial theorem came out.

First, we introduce Newton binomial coefficients $ {r \ choose n} $.

Newton binomial coefficient is defined:

Let r is a real number, is an integer of n-introduced in the form of symbols

$${r \choose n}=
\begin{cases}
0, & n<0\\
1, & n=0\\
\frac{r(r-1)\cdots (r-n+1)}{n!}, & n>0
\end{cases}$$

Newton generalized binomial theorem:

                $(x+y)^{\alpha}=\sum_{n=0}^\infty{\alpha \choose n}x^{n}y^{\alpha-n}$

Wherein x, y, α is a real number, and $ \ mid \ frac {x} {y} \ mid <1 $
Proof:

Demonstrate the need to use knowledge of mathematical analysis, never learned, you should read 2333.

Order $ z = \ frac {x} {y} $ there is:

$(x+y)^{\alpha}=y^{\alpha}(1+z)^{\alpha},\mid z\mid <1$

Provided $ f (z) = (1 + z) ^ {\ alpha} $, so there are:

$f^{(n)}(z)=\alpha (\alpha -1)\cdots (\alpha -n+1)(1+z)^{\alpha -n}$

Thus, when Z 0 = 0, the Taylor formula function (in this case should be referred to McLaughlin Expandable) has the following form:

$(1+z)^{\alpha} =1+\frac{\alpha}{1!}z+\frac{\alpha (\alpha -1)}{2!}z^{2}+\cdots +\frac{\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}z^{n}+r_n(0;z)$

That is:

$(1+z)^{\alpha}=1+{\alpha \choose 1}z+{\alpha \choose 2}z^{2}+\cdots +{\alpha \choose n}z^{n}+r_n(0;z)$

The remainder will have to use the Cauchy formula:

$r_n(0;z)=\frac{\alpha (\alpha -1)\cdots (\alpha -n)}{n!}(1+ξ)^{\alpha -n}(z-ξ)^{n}z$

Wherein ξ is between 0 to z.

The remainder deformation can be obtained at:

$r_n(0;z)=\alpha (1-\frac{\alpha}{1})\cdots (1-\frac{\alpha}{n})(1+ξ)^{\alpha}(\frac{z-ξ}{1+ξ})^{n}z$

Because when $ \ mid z \ mid <1 $ time, from between 0 and z ξ This condition can be introduced:

$\mid \frac{z-ξ}{1+ξ}\mid =\frac{\mid z\mid -\mid ξ\mid}{\mid 1+ξ\mid}\leq \frac{\mid z\mid -\mid ξ\mid}{1-\mid ξ\mid}=1-\frac{1-\mid z\mid}{1-\mid ξ\mid}\leq 1-(1-\mid z\mid)=\mid z\mid$

于是$\mid r_n(0;z)\mid \leq\mid \alpha (1-\frac{\alpha}{1})\cdots (1-\frac{\alpha}{n})\mid (1+ξ)^{\alpha}\mid z\mid ^{n+1}$

Because $ \ mid r_ {n + 1} (0; z) \ mid = \ mid r_n (0; z) \ mid \ times \ mid (1- \ frac {\ alpha} {n + 1}) z \ mid and because $ $ \ mid z \ mid <1 $, so if $ \ mid z \ mid <q <1 $, regardless of $ \ alpha $ how the value for n will be sufficiently large $ \ mid (1- \ frac {\ alpha} {n + 1}) z \ mid <q <1 $, which means that when $ n \ rightarrow \ infty $, there $ r_n (0; z) \ rightarrow 0 $, whereby described when $ \ mid z \ mid <1 $ when infinite series $ 1 + {\ alpha \ choose 1} z + {\ alpha \ choose 2} z ^ {2} + \ cdots + {\ alpha \ choose n} z ^ {n} + \ cdots (*) $ converges to $ (1 + z) ^ {\ alpha} $.

For this case equation $ y ^ {\ alpha} (1 + z) ^ {\ alpha}, \ mid z \ mid <1 $ to the left and then expanded to the infinite series $ y ^ \ alpha $ get multiplied our $ (x + y) ^ {\ alpha} = \ sum_ {n = 0} ^ \ infty {\ alpha \ choose n} x ^ {n} y ^ {\ alpha-n} $

When $ \ mid z \ mid> $ 1, by the d'Alembert ratio test method can be obtained, as long as $ \ alpha \ notin \ mathbb { N} $, stages (*) always diverge.

Derivative particular, when $ \ alpha \ in \ mathbb {N} $ when a function $ f (z) $, the above arbitrary order n are 0, 0 remainder is directly launched on the bin, expand the binomial theorem is obtained through high school.

"Mathematical Analysis" References Zhuoli Qi and Qu Wanling "Discrete Mathematics"

Guess you like

Origin www.cnblogs.com/Asika3912333/p/11406614.html