Higher Mathematics (limits and continuity) personal learning summary

Important limit formula

Evaluating Limit Reference Links:
https://www.sohu.com/a/214347954_507476

Special limit on the e

\[\lim_{x \to \infty} (1+\frac{1}{x})^x = e\]

\[\lim_{x \to 0} (1+ x)^{\frac{1}{x}} = e\]

Power limit on x refers to special functions

\[\lim_{x \to +\infty} x^{\frac{1}{x}} = 1\]

\[\lim_{x \to 0^+} x^x = 1\]

\[\lim_{x \to 0^+} x \ln x =0\]

Special limit with Radical

\[\lim_{n \to \infty} \sqrt[n]{a} = 1\]

\[\lim_{n \to \infty} \sqrt[n]{n} = 1\]

Taylor expansion

1, \ (sin (x) \)

\[sin(x) = x-\frac{1}{6}x^3+O(x)\]

\[ sin(x) = \sum_{i = 0}^{i = n} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \]

2、\(arcsin(x)\)

\[arcsin(x) = x+\frac{1}{6}x^3+O(x)\]

\[ arcsin(x) = \sum_{i = 0}^{i = n} \frac{x^{2n+1}}{(2n+1)!} \]

3 \ (tan (x) \)

\ [Tan (x) = x + \ frac {1} {3} x ^ 3 + O (x + 3) \]

\[ tan(x) = \sum_{i = 0}^{i = n} \frac{x^{2n+1}}{2n+1} \]

4, (have to remember the simplicity derived cumbersome and error-prone) \ (arctan (the X-) \)

\[arctan(x) = x - \frac{1}{3}x^3 + O(x^3)\]

\[ arctan(x) = \sum_{i = 0}^{i = n} (-1)^{2n+1}\frac{x^{2n+1}}{2n+1} \]

5、\(cos(x)\)

\[cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^4)\]

\[ cos(x) = \sum_{i = 0}^{i = n} (-1)^n\frac{x^{2n}}{(2n)!} \]

6, \ (LN (1 + x) \)

\[ln(1+x) = x-\frac{1}{2}x^2 + \frac{1}{3}x^3 + O(x^3)\]

\[ ln(1+x) = \sum_{i = 0}^{i = n} (-1)^n \frac{x^{n+1}}{n+1} \]

7、\(e^x\)

\[e^x = 1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+O(x^3)\]

\[ e^x = \sum_{i = 0}^{i = n} \frac{x^n}{n!} \]

8、\((1+x)^{\alpha}\)

\[(1+x)^{\alpha} = 1+\alpha x +\frac{\alpha(\alpha-1)}{2}x^2 +O(x)\]

\[ (1+x)^{\alpha} = \sum_{i = 0}^{i = n} \frac{C^n_{\alpha}}{n!} \cdot x^n \]

9、\(\frac{1}{1-x}\)

\[\frac{1}{1-x} = 1 + x + x^2 + x^3 + O(x^3)\]

\[ \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \]

10、\(a^x\)

\ [A ^ x = 1 + x \ LN a \]

11、\((1+x)^{\frac{1}{x}}\)

\[(1+x)^{\frac{1}{x}} = e(1-\frac{x}{2} + \frac{11x^2}{24} - \frac{7x^3}{16} \cdots) = e - \frac{x}{2}e + \frac{11x^2}{24}e - \frac{7x^3}{16}e \cdots\]

(Error-prone points) using the equivalent infinitesimal and limit the Taylor expansion of demand conditions

Focus! !

1, do multiplication and division, can

2, add and subtract, only part of the case can verify the feasibility of the method:

For
\ [\ lim a + b \
] with Ru Taile or the equivalent infinitesimal see satisfies \ (\ frac {a} {
b} = \ pm 1 \) is brought can not, or can be brought; e.g. : \
[\ Lim \ X COS -. 1 = (l- \ FRAC X ^ {2} {2}) -. 1 = - \ ^ X FRAC {2} {2} \]
as to bring the \ (\ FRAC {1- \ frac {x ^ 2
} {2}} {- 1} \ neq \ pm1 \) and
\ [\ lim \ sin x - \ tan x \] does not work, because the brought to \ (\ frac { x} {- x} = -1 \)

Classification limit calculation problems

Limit calculation function

1, the difference between the molecular formula for the two

Jane formulated using the squared difference

For example: 1000 question 1.7 \ (\ FRAC {\ sqrt-5X. 1} {- \ sqrt {2x + X ^. 5}} {2-4} \)

2, with the exponential function \ (\ frac {1} { x} \) , or with a \ (\ ln f (x) \) of

(Reciprocal) put down simply because formula

For example:
1.9 1000 question \ (\ lim \ limits_ {x \ to \ infty} e ^ {- x} (1+ \ frac {1} {x}) ^ {x ^ 2} \)

1.11

3, with the integration of

Integration into fractions, eliminating integration with Hospitol

For example:
1000 theme 1.8

4, trigonometric functions can not be calculated with Rutai Le expansion

For example:
1.5 1000 question

5, a median Lagrange's theorem

If \ ([A, B] \) (open interval, can be closed interval) may be turned continuously, then:

$ \ Exists \ epsilon \ in (a, b) $ such that

\[ f'(\epsilon)(b-a) = f(b) - f(a)\]\[f'(\epsilon) = \frac{f(b) - f(a)}{b-a}\]

6, \ (^ \ infty \ 1) calculation of the limit

\ (x \ to \ infty, g (x) ^ {f (x)} \) is equal to \ (e ^ A \)

\[A= f(x)[g(x)-])\]

For example: 1.66

Infinitely smaller than the order

1, when the \ (A \ NEQ 0, K> 0 \) , \ (X \ to 0 \) when \ (F (X) \ SIM AX ^ K \) \ (\ Rightarrow \) \ (X \ to 0 \) when, f (x) is infinitesimal of order k x

2, if the (k> 0 \) \ time, \ (\ Lim \ limits_ {X \ to 0} \ FRAC {F (X)} {X ^ K} \) \ (\ Rightarrow \) \ (X \ to 0, f (x) \) is \ (x \) is \ (k \) infinitesimal

3, if the \ (F (X) = a_0 + a_1x + \ cdots a_k X ^ K \ cdots \) , where \ (a_0 + a_1x + \ cdots A_ {K-. 1} = 0 \) , but \ (a_k \ neq 0 \) , then \ (f (x) \) is infinitesimal of order k x

4, when the \ (x \ to 0 \) , \ (G (x) \) of order n x is infinitesimal, \ (F (x) \) is the m-th order x is infinitesimal, \ [\ int ^ {G ( x)} _ 0 f (t ) dt \] is the x \ ((m + 1) \ cdot n \) infinitesimal

5, if the \ (x \ to 0 \) when \ (F (x) \) and \ (G (x) \) are of order m x infinitesimal and n infinitesimal, and \ (\ lim \ limits_ {x \ to 0} H (x) = a \ NEQ 0 \) , then
. 1) \ (F (x) H (x) \) is the m-th order x infinitesimal
\ (f (x) g ( x) \) is of x \ (m + n \) infinitesimal
2) \ (m> n \) when, \ (F (x) + G (x) \) of order n x is infinitesimal
. 3) \ (m = n \) when, \ (F (x) + G (x) \) is greater than or of order n x n order infinitesimal

Calculation of the limit of the number of columns

1, into a function to count limit

You can then use 'Hospital, Lagrange value theorem

2, the first sum or product

3. Squeeze Rule

1, a simple scaling

n and n-number of no more than n multiplied by the maximum value, the minimum value is not less than n multiplied by

例如:\[\lim\limits_{n \to \infty} (\frac{n}{n^2+1} + \frac{n}{n^2+2} \cdots \frac{n}{n^2+n})\]

A limit is set original;
the number of columns is the maximum value \ (\ {n-FRAC} ^ {n-2}. 1 + \) , the minimum value of \ (\ frac {n} { n ^ 2 + n} \)

\[\frac{n}{n^2+n} \cdot n \leq A \leq \frac{n}{n^2+1} \cdot n\]

\[\Rightarrow \frac{1}{1+\frac{1}{n}} \leq A \leq \frac{1}{1+\frac{1}{n^2}}\]

\[\Rightarrow A=1\]

Adding a limited number of m

例如:\[ \lim\limits_{n \to \infty} \sqrt[n]{a_1^n + a_2^n +\cdots a_m^n}, 0 \leq a_i(i = 1,2,3, \cdots m)\]

This problem is to be noted, to find the maximum value , the maximum value is greater than, less than the maximum value and the m

Provided the original and the number of columns is A, a maximum value of \ (a_1 = max (a_1, a_2, \ cdots, a_m) \) then
\ [a_1 ^ n \ leq A \ leq a_1 ^ n \ cdot m \]

\[\Rightarrow a_1 \leq \sqrt[n]{A} \leq a_1 \cdot m^{\frac{1}{n}}\]

\[\Rightarrow \lim\limits_{n \to \infty} A = a_1=max(a_1, \cdots ,a_m)\]

Important conclusion:
the form \ [\ lim \ limits_ {n \ to \ infty} \ n sqrt [] {a_1 ^ n + a_2 ^ n + \ cdots a_m ^ n} = max (a_1, a_2, \ cdots, a_m) \ ] m limited

例1:\[\lim\limits_{n \to \infty} \sqrt[n]{2020 + 2^n+3^n+4^n}=4\]

Example 2: \ [\ Lim \ limits_ {n-\ to \ infty} \ n-sqrt [] {. 1 + X ^ n-+ (\ FRAC {X ^ 2} {2}) ^ n-} \] (remember classification discussed)

4, monotone bounded guidelines

5, the number of columns of the structuring method

Seeking application of the limit

1, intermittent points

the first sort

It may be short discontinuous point
\ (x = x_0 \) no definition at

Jump discontinuity point
limit ranging from about

The second category

Infinite discontinuity points
without limits and no boundaries

Oscillation break point
without limits there are boundaries

2, function curve asymptotes Seeking

Vertical asymptotes

  1. Find someone undefined point \ (x_0 \)
  2. The demand limit point \ [\ lim_ {x \ to \ infty} f (x) = \ \ infty] limit exists, \ (X = x_0 \) is the vertical asymptote

Horizontal asymptote

Of Limit \ [\ lim_ {X \ to \ PM \ infty} F (X) = A \] \ (A \) whether there

Exists \ (y = A \) is the horizontal asymptote

Oblique asymptote

If \ (y = f (x) \) is satisfied:

  1. \ [\ lim_ {X \ to \ infty} \ FRAC {F (X)} = {X} K \] \ (K \) present
  2. \ [\ lim_ {X \ to \ infty} (F (X) -kx) = B \] \ (B \) present

There swash asymptote \ (y = kx + b \ )

3, defined on calculation using the derivative of the derivative

Guess you like

Origin www.cnblogs.com/the-loneliness-survivor/p/11326625.html