Common network structure finishing convolution depth

FPN

bottom up + top down.

Reference: https://github.com/luliyucoordinate/FPN_pytorch/blob/master/fpn.py

import torch.nn as nn
import torch.nn.functional as F
import math


__all__=['FPN']

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        

    def forward(self, x):
        residual = x
        
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        
        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        
        out += residual
        out = self.relu(out)
        
        return out


class FPN(nn.Module):
    def __init__(self, block, layers):
        super(FPN, self).__init__()
        self.inplanes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)

        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # Bottom-up layers
        self.layer1 = self._make_layer(block,  64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        # Top layer
        self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0)  # Reduce channels

        # Smooth layers
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        # Lateral layers
        self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample  = None
        if stride != 1 or self.inplanes != block.expansion * planes:
            downsample  = nn.Sequential(
                nn.Conv2d(self.inplanes, block.expansion * planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(block.expansion * planes)
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)


    def _upsample_add(self, x, y):
        _,_,H,W = y.size()
        return F.upsample(x, size=(H,W), mode='bilinear') + y

    def forward(self, x):
        # Bottom-up
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        c1 = self.maxpool(x)
        
        c2 = self.layer1(c1)
        c3 = self.layer2(c2)
        c4 = self.layer3(c3)
        c5 = self.layer4(c4)
        # Top-down
        p5 = self.toplayer(c5)
        p4 = self._upsample_add(p5, self.latlayer1(c4))
        p3 = self._upsample_add(p4, self.latlayer2(c3))
        p2 = self._upsample_add(p3, self.latlayer3(c2))
        # Smooth
        p4 = self.smooth1(p4)
        p3 = self.smooth2(p3)
        p2 = self.smooth3(p2)
        return p2, p3, p4, p5


def FPN101():
    return FPN(Bottleneck, [2,2,2,2])
View Code

RetinaNet

retinanet FPN structure and some differences in the output layer.

Reference: https://github.com/yhenon/pytorch-retinanet/blob/master/model.py

import torch.nn as nn
import torch
import math
import time
import torch.utils.model_zoo as model_zoo
from utils import BasicBlock, Bottleneck, BBoxTransform, ClipBoxes
from anchors import Anchors
import losses
from lib.nms.pth_nms import pth_nms

def nms(dets, thresh):
    "Dispatch to either CPU or GPU NMS implementations.\
    Accept dets as tensor"""
    return pth_nms(dets, thresh)

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}

class PyramidFeatures(nn.Module):
    def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
        super(PyramidFeatures, self).__init__()
        
        # upsample C5 to get P5 from the FPN paper
        self.P5_1           = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P5_upsampled   = nn.Upsample(scale_factor=2, mode='nearest')
        self.P5_2           = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # add P5 elementwise to C4
        self.P4_1           = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P4_upsampled   = nn.Upsample(scale_factor=2, mode='nearest')
        self.P4_2           = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # add P4 elementwise to C3
        self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # "P6 is obtained via a 3x3 stride-2 conv on C5"
        self.P6 = nn.Conv2d(C5_size, feature_size, kernel_size=3, stride=2, padding=1)

        # "P7 is computed by applying ReLU followed by a 3x3 stride-2 conv on P6"
        self.P7_1 = nn.ReLU()
        self.P7_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=2, padding=1)

    def forward(self, inputs):

        C3, C4, C5 = inputs

        P5_x = self.P5_1(C5)
        P5_upsampled_x = self.P5_upsampled(P5_x)
        P5_x = self.P5_2(P5_x)
        
        P4_x = self.P4_1(C4)
        P4_x = P5_upsampled_x + P4_x
        P4_upsampled_x = self.P4_upsampled(P4_x)
        P4_x = self.P4_2(P4_x)

        P3_x = self.P3_1(C3)
        P3_x = P3_x + P4_upsampled_x
        P3_x = self.P3_2(P3_x)

        P6_x = self.P6(C5)

        P7_x = self.P7_1(P6_x)
        P7_x = self.P7_2(P7_x)

        return [P3_x, P4_x, P5_x, P6_x, P7_x]


class RegressionModel(nn.Module):
    def __init__(self, num_features_in, num_anchors=9, feature_size=256):
        super(RegressionModel, self).__init__()
        
        self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
        self.act1 = nn.ReLU()

        self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act2 = nn.ReLU()

        self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act3 = nn.ReLU()

        self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act4 = nn.ReLU()

        self.output = nn.Conv2d(feature_size, num_anchors*4, kernel_size=3, padding=1)

    def forward(self, x):

        out = self.conv1(x)
        out = self.act1(out)

        out = self.conv2(out)
        out = self.act2(out)

        out = self.conv3(out)
        out = self.act3(out)

        out = self.conv4(out)
        out = self.act4(out)

        out = self.output(out)

        # out is B x C x W x H, with C = 4*num_anchors
        out = out.permute(0, 2, 3, 1)

        return out.contiguous().view(out.shape[0], -1, 4)

class ClassificationModel(nn.Module):
    def __init__(self, num_features_in, num_anchors=9, num_classes=80, prior=0.01, feature_size=256):
        super(ClassificationModel, self).__init__()

        self.num_classes = num_classes
        self.num_anchors = num_anchors
        
        self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
        self.act1 = nn.ReLU()

        self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act2 = nn.ReLU()

        self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act3 = nn.ReLU()

        self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act4 = nn.ReLU()

        self.output = nn.Conv2d(feature_size, num_anchors*num_classes, kernel_size=3, padding=1)
        self.output_act = nn.Sigmoid()

    def forward(self, x):

        out = self.conv1(x)
        out = self.act1(out)

        out = self.conv2(out)
        out = self.act2(out)

        out = self.conv3(out)
        out = self.act3(out)

        out = self.conv4(out)
        out = self.act4(out)

        out = self.output(out)
        out = self.output_act(out)

        # out is B x C x W x H, with C = n_classes + n_anchors
        out1 = out.permute(0, 2, 3, 1)

        batch_size, width, height, channels = out1.shape

        out2 = out1.view(batch_size, width, height, self.num_anchors, self.num_classes)

        return out2.contiguous().view(x.shape[0], -1, self.num_classes)

class ResNet(nn.Module):

    def __init__(self, num_classes, block, layers):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        if block == BasicBlock:
            fpn_sizes = [self.layer2[layers[1]-1].conv2.out_channels, self.layer3[layers[2]-1].conv2.out_channels, self.layer4[layers[3]-1].conv2.out_channels]
        elif block == Bottleneck:
            fpn_sizes = [self.layer2[layers[1]-1].conv3.out_channels, self.layer3[layers[2]-1].conv3.out_channels, self.layer4[layers[3]-1].conv3.out_channels]

        self.fpn = PyramidFeatures(fpn_sizes[0], fpn_sizes[1], fpn_sizes[2])

        self.regressionModel = RegressionModel(256)
        self.classificationModel = ClassificationModel(256, num_classes=num_classes)

        self.anchors = Anchors()

        self.regressBoxes = BBoxTransform()

        self.clipBoxes = ClipBoxes()
        
        self.focalLoss = losses.FocalLoss()
                
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        prior = 0.01
        
        self.classificationModel.output.weight.data.fill_(0)
        self.classificationModel.output.bias.data.fill_(-math.log((1.0-prior)/prior))

        self.regressionModel.output.weight.data.fill_(0)
        self.regressionModel.output.bias.data.fill_(0)

        self.freeze_bn()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def freeze_bn(self):
        '''Freeze BatchNorm layers.'''
        for layer in self.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.eval()

    def forward(self, inputs):

        if self.training:
            img_batch, annotations = inputs
        else:
            img_batch = inputs
            
        x = self.conv1(img_batch)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)

        features = self.fpn([x2, x3, x4])

        regression = torch.cat([self.regressionModel(feature) for feature in features], dim=1)

        classification = torch.cat([self.classificationModel(feature) for feature in features], dim=1)

        anchors = self.anchors(img_batch)

        if self.training:
            return self.focalLoss(classification, regression, anchors, annotations)
        else:
            transformed_anchors = self.regressBoxes(anchors, regression)
            transformed_anchors = self.clipBoxes(transformed_anchors, img_batch)

            scores = torch.max(classification, dim=2, keepdim=True)[0]

            scores_over_thresh = (scores>0.05)[0, :, 0]

            if scores_over_thresh.sum() == 0:
                # no boxes to NMS, just return
                return [torch.zeros(0), torch.zeros(0), torch.zeros(0, 4)]

            classification = classification[:, scores_over_thresh, :]
            transformed_anchors = transformed_anchors[:, scores_over_thresh, :]
            scores = scores[:, scores_over_thresh, :]

            anchors_nms_idx = nms(torch.cat([transformed_anchors, scores], dim=2)[0, :, :], 0.5)

            nms_scores, nms_class = classification[0, anchors_nms_idx, :].max(dim=1)

            return [nms_scores, nms_class, transformed_anchors[0, anchors_nms_idx, :]]



def resnet18(num_classes, pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(num_classes, BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18'], model_dir='.'), strict=False)
    return model


def resnet34(num_classes, pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(num_classes, BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34'], model_dir='.'), strict=False)
    return model


def resnet50(num_classes, pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(num_classes, Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50'], model_dir='.'), strict=False)
    return model

def resnet101(num_classes, pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(num_classes, Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101'], model_dir='.'), strict=False)
    return model


def resnet152(num_classes, pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(num_classes, Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152'], model_dir='.'), strict=False)
    return model
View Code

 

Guess you like

Origin www.cnblogs.com/walter-xh/p/11286628.html