luogu P3327 [SDOI2015] about the number and the number of inversion Möbius

Face questions

My approach is based on two formulas:

\ [[n-=. 1] = \ sum_ {D | n-} \ MU (D) \]
\ [\ sigma_0 (I * J) = \ sum_ {X | I} \ sum_ {Y | J} [GCD (X , y) = 1] \]
wherein \ (\ sigma_0 (n) \ ) represents \ (n-\) number divisors

The first formula is a function of the basic properties of Mobius, as demonstrated in the second formula, could be considered \ (i * j \) in each of the prime factors of \ (\ sigma_0 (i * j ) \) contributed for a quality factor \ (P \) , if it is in \ (I \) number in the range \ (k_1 \) , it \ (J \) number in the range \ (K_2 \) , then \ ( \ sigma_0 (i * j) \ ) in \ (P \) contribution \ ((k_1 + + K_2. 1) \) (about a few number of formulas), in \ (gcd (x, y) = 1 \) in the case where either \ (X \) in \ (P \) number is 0, or \ (Y \) in \ (P \) number is 0, a total of \ ((k_1 + k_2 + 1 ) \) kinds of programs, and \ (i * j \) the same contribution, so the equation is equal to the left and right sides.

Then you can push a pleasant expression it!

\[ \sum_{i=1}^{n} \sum_{j=1}^{m}\sigma_0(i*j)\]

\[ \sum_{i=1}^{n} \sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\]

\[\sum_{x=1}^{n}\sum_{y=1}^m \sum_{i=1}^{\lfloor \frac{n}{x} \rfloor } \sum_{j=1}^{\lfloor \frac{m}{y}\rfloor} [gcd(x,y)=1]\]

\[\sum_{x=1}^{n}\sum_{y=1}^m \lfloor \frac{n}{x} \rfloor \lfloor \frac{m}{y}\rfloor \sum_{k|gcd(x,y)}\mu(k)\]

\[\sum_{k=1}^{n}\sum_{x=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{y=1}^{\lfloor \frac{m}{k} \rfloor} \lfloor \frac{n}{kx}\rfloor \lfloor \frac{m}{ky} \rfloor\mu(k)\]

\[\sum_{k=1}^{n}\mu(k)(\sum_{x=1}^{\lfloor \frac{n}{k}\rfloor}\lfloor\frac{n}{kx}\rfloor)(\sum_{y=1}^{\lfloor\frac{m}{k}\rfloor}\lfloor\frac{m}{ky}\rfloor)\]

Then we set \ (S (n-) = \ sum_ {I =. 1} ^ {n-} \ lfloor \ FRAC {n-} {I} \ rfloor \) , apparently \ (S (n) \) is \ (O (\ sqrt {n}) \ ) calculated

Then the above equation can be turned into:

\[\sum_{k=1}^{n}\mu(k)S(\lfloor\frac{n}{k}\rfloor)S({\lfloor\frac{m}{k}\rfloor})\]

First Pretreatment \ (S (. 1) -S (MAXN) \) , then you can \ (O (\ sqrt {n }) \) to answer each inquiry it!

Code:

#include<bits/stdc++.h>
using namespace std;
#define N 50007
#define ll long long
const int lim=50000;
ll s[N];
int ui[N],pr[N],cnt;
bool zhi[N];
void Init()
{
    int i,j;
    ui[1]=1;
    for(i=2;i<=lim;i++)
    {
        if(!zhi[i])
        {
            pr[++cnt]=i;
            ui[i]=-1;
        }
        for(j=1;j<=cnt&&i*pr[j]<=lim;j++)
        {
            int p=pr[j],x=i*p;
            zhi[x]=true;
            if(i%p==0)
            {
                ui[x]=0;
                break;
            }
            ui[x]=-ui[i];
        }
    }
    for(i=1;i<=lim;i++)
        ui[i]+=ui[i-1];
    for(i=1;i<=lim;i++)
    {
        int l,r;
        for(l=1;l<=i;l=r+1)
        {
            r=i/(i/l);
            s[i]+=1ll*(r-l+1)*(i/l);
        }
    }
}
int main()
{
    int n,m,t;
    Init();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        int l1=1,r1,l2=1,r2,cur=1;
        ll ans=0;
        while(l1<=n&&l2<=m)
        {
            int l,r;
            r1=n/(n/l1),r2=m/(m/l2);
            l=cur;
            if(r1<r2)r=r1,cur=l1=r1+1;
            else r=r2,cur=l2=r2+1;
            ans+=1ll*(ui[r]-ui[l-1])*s[n/l]*s[m/l];
        }
        printf("%lld\n",ans);
    }
    return 0;
}

Guess you like

Origin www.cnblogs.com/lishuyu2003/p/11257123.html