"Brush title" Color Group Theory

  This question is at first glance quite water, direct $ Ploya $ on it, but look at the range of data:

$ N \ good 1e9 $

1e9 species that have replaced, this prodigiously than the.

So consider optimizing formulas.

First proof, each transfer cycle junction size is replaced with the i-th $ gcd (i, n) $

prove:

  First, the x-th element set position p, is the substitution type i, the k-th cycle back to the origin, k is the number of cycles junction.

  $ I + p \ equiv p (mod n) $

  $ I \ equiv 0 (mod n) $

  $ N | i $

  $ I | $ ik

We want the smallest k, then:

  $ I = lcm (i, n) $

  $ I = \ frac {a} {gcd (i, n)} $

  $ k= \frac{n}{gcd(i,n)} $

Each end of the cycle are the same size, so the loop number of nodes is:

  $ num= \frac{n}{\frac{n}{gcd(i,n)}} =gcd(i,n) $

QED.

Subsequently pushing polya the formula:

[S] is a unit function, s the establishment returns 1, otherwise it returns 0.

$ ans=\frac{1}{n} \sum \limits_{i=1}^n n^{gcd(i,n)} $

$   =\sum \limits_{i=1}^n n^{gcd(i,n)-1} $

$   =\sum \limits_{i=1}^n \sum \limits_{d|n} n^{d-1} $

$   =\sum \limits_{d|n} n^{d-1} \sum \limits_{i=1}^{n}[gcd(i,n)==d)]  $

$   =\sum \limits_{d|n} n^{d-1} \sum \limits_{i=1}^{\frac{n}{d}}[gcd(i,\frac{i,n})==d] $

$   =\sum \limits_{d|n} n^{d-1} \phi{frac{n}{d}} $

Factorising dfs can then traverse all the factors, the way to determine the Euler function.

问题解决。

Guess you like

Origin www.cnblogs.com/Lrefrain/p/11231018.html