Several important piecewise function

绝对值函数
  $y=\left|x\right|=
  \left\{\begin{matrix}
  x, x \ge 0 &\\
  -x, x < 0 &
  \end{matrix}\right.$


  nature:

    $\left|x\right|=x \Leftrightarrow x \ge 0,\left|x\right|=-x \Leftrightarrow x \le 0$

  Graphics:

           

 

Rounding function
  $ y = [x] = $ largest integer less than or equal to $ X $ is
  represented by piecewise function: $ y = [x] = n, n \ le x <n + 1 $ ($ n $ is an integer )

  nature:

    $ [X] \ le x <[x] + 1, [x] = x \ Leftrightarrow x $ is an integer, $ [x + y] \ ge [x] + [y], [x + n] = [x ] + n $ ($ n $ is an integer)

  Graphics :( step curve)

            

 

符号函数
  $y=sgnx=
  \left\{\begin{matrix}
  1,& x > 0 \\
  0,& x = 0 \\
  -1,& x < 0
  \end{matrix}\right.$

  性质:
    $sgnx=1 \Leftrightarrow x > 0, sgnx=-1 \Leftrightarrow x < 0$
    $sgn(x-a) = 1 \Leftrightarrow x > a, sgn(x-a) = -1 \Leftrightarrow x < a$
    $x=sgnx \cdot \left|x\right|,\left|x\right|=sgnx \cdot x$

  Graphics:

    

 

Dirichlet function
  $ Y = D (X) =
  \ left \ {\ the begin Matrix {}
  . 1, is a rational number X & \\
  0, X is an irrational number &
  \ end {matrix} \ right. $


  Properties:
    Dirichlet function has many bad properties
    1) no graphics Dirichlet function (no curve segment)
    2) n Dirichlet function in any period of the periodic function is a rational number, it is no minimum positive period
    3 ) Dirichlet function everywhere without limit, not everywhere continuous, always non-conductive, non-integrable on any interval
    Dirichlet function used to give trans configurations and embodiments having a particular quality function
    as a function of: $ y = xD (x) $ only continuous, discontinuous at other points at the origin,
    the function $ y = x ^ {2} D (x) $ may be turned only at the origin, intermittently (and thus non-conductive) at the other point

  note:

    Dirichlet function may be defined as the limit of $ D (x) = \ lim_ {m \ rightarrow \ infty} [\ lim_ {n \ rightarrow \ infty} cos ^ {n} (\ pi m! X)] $

 

Guess you like

Origin www.cnblogs.com/shiliye/p/11105125.html