Take notes fast learning

background:

Today, I have found fast ride Th ( 1 ) \Theta(1) approach.

Topic:

The solution is to ride fast x Y m O d    p x*y \mod p issues.
sometimes x , y , p x,y,p particularly large,

Θ ( log n ) \Theta(\log n)

principle:
y 0 ( m o d    2 ) : x y m o d    p = 2 x y 2 m o d    p y≡0(\mod2):x*y \mod p=2*x*\frac{y}{2}\mod p
y 1 ( m o d    2 ) : x y m o d    p = ( 2 x y 2 + y ) m o d    p y≡1(\mod2):x*y \mod p=(2*x*\lfloor\frac{y}{2}\rfloor+y)\mod p
written recursive or recursive form, in which each position can be m o d    p \mod p can be.
note: a m o d    b a \mod b results from the symbol a a determination, therefore x y m o d    p x*y\mod p result from the symbol x y x * y OK.

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
	LL x,y,mod;
LL dg(LL x,LL y,LL mod)
{
	if(y==1) return x;
	LL op=dg(x,y>>1,mod);
	if(y&1) return (op*2%mod+x)%mod; else return op*2%mod;
}
int main()
{
	scanf("%lld %lld %lld",&x,&y,&mod);
	int op=((x<0&&y>0)||(x>0&&y<0));
	printf("%lld\n",(op?-1ll:1ll)*dg(abs(x),abs(y),abs(mod)));
}

Θ ( 1 ) \Theta(1) :

principle:
x y m o d &ThinSpace;&ThinSpace; p = ( x y x y p p ) m o d &ThinSpace;&ThinSpace; p x*y\mod p=(x*y-\lfloor\frac{x*y}{p}\rfloor*p)\mod p
At this point, our process with the amount long double \text{long double} to store can be.
note: a m o d &ThinSpace;&ThinSpace; b a \mod b results from the symbol a a determination, therefore x y m o d &ThinSpace;&ThinSpace; p x*y\mod p result from the symbol x y x * y OK.

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef long double LD;
	LL x,y,mod;
LL times(LL x,LL y,LL mod)
{
	LD t=LD(x)*LD(y)-LL(LD(x)*LD(y)/LD(mod))*LD(mod);
	LL tt=(LL)t;
	return tt>=0?tt%mod:(tt+mod)%mod;
}
int main()
{
	scanf("%lld %lld %lld",&x,&y,&mod);
	int op=((x<0&&y>0)||(x>0&&y<0));
	printf("%lld\n",(op?-1ll:1ll)*times(abs(x),abs(y),abs(mod)));
}

Guess you like

Origin blog.csdn.net/zsyz_ZZY/article/details/89925937