lower_bound ( upper_bound )

Copyright: code word is not easy, please indicate the source: https://blog.csdn.net/qq_24309981/article/details/90581412

Theory 1

Include files: #include <algorithm>
Namespace: a using namespace std;
function template:

template <class ForwardIterator, class T>
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last, const T& val);
template <class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last, const T& val, Compare comp);

Function: the Return to Iterator Lower bound (return ordered section the first element is not less than the specified iterator value; upper_bound, return an ordered section first iterator is greater than the value specified element)

  • Returns an iterator pointing to the first element in the range [first,last) which does not compare less than val, If all the element in the range compare less than val, the function returns last;
  • The elements are compared using operator< for the first version, and comp for the second;
  • The elements in the range shall already be sorted according to this same criterion (operator< or comp);
  • The function optimizes the number of comparisons performed by comparing non-consecutive elements of the sorted range, which is specially efficient for random-access iterators;
  • Unlike upper_bound, the value pointed by the iterator returned by this function may also be equivalent to val, and not only greater.

time complexity:

  • On average, logarithmic in the distance between first and last: Performs approximately log2(N)+1 element comparisons (where N is this distance).
  • On non-random-access iterators, the iterator advances produce themselves an additional linear complexity in N on average.

The behavior of this function template is equivalent to:

template <class ForwardIterator, class T>
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last, const T& val)
{
	ForwardIterator it;
	iterator_traits<ForwardIterator>::difference_type count, step;
	count = distance(first,last);
	while (count>0)
	{
		it = first; step=count/2; advance (it,step);
		if (*it<val) 
		{                 // or: if (comp(*it,val)), for version (2)
			first=++it;
			count-=step+1;
		}
    	else
    	{
    		count=step;
    	}
    }
	return first;
}

Example 2

// lower_bound/upper_bound example
#include <iostream>     // std::cout
#include <algorithm>    // std::lower_bound, std::upper_bound, std::sort
#include <vector>       // std::vector

int main () {
  int myints[] = {10,20,30,30,20,10,10,20};
  std::vector<int> v(myints,myints+8);           // 10 20 30 30 20 10 10 20

  std::sort (v.begin(), v.end());                // 10 10 10 20 20 20 30 30

  std::vector<int>::iterator low,up;
  low=std::lower_bound (v.begin(), v.end(), 20); //          ^
  up= std::upper_bound (v.begin(), v.end(), 20); //                   ^

  std::cout << "lower_bound at position " << (low- v.begin()) << '\n';
  std::cout << "upper_bound at position " << (up - v.begin()) << '\n';

  return 0;
}
//输出
lower_bound at position 3
upper_bound at position 6

Reference 3

http://www.cplusplus.com/reference/algorithm/lower_bound/

Guess you like

Origin blog.csdn.net/qq_24309981/article/details/90581412