Build a PyTorch neural network for temperature prediction

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
features = pd.read_csv('temps.csv')

#看看数据长什么样子
features.head()

in the datasheet

  • The specific time represented by year, moth, day, and week respectively
  • temp_2: the highest temperature value of the day before yesterday
  • temp_1: yesterday's highest temperature value
  • average: In history, the average maximum temperature value of this day every year
  • actual: This is our label value, the real maximum temperature of the day
  • friend: This column may be for fun, the possible value guessed by your friend, let’s just ignore it
  • # 处理时间数据
    import datetime
    
    # 分别得到年,月,日
    years = features['year']
    months = features['month']
    days = features['day']
    
    # datetime格式
    dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
    dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
    # 准备画图
    # 指定默认风格
    plt.style.use('fivethirtyeight')
    
    # 设置布局
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
    fig.autofmt_xdate(rotation = 45)
    
    # 标签值
    ax1.plot(dates, features['actual'])
    ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
    
    # 昨天
    ax2.plot(dates, features['temp_1'])
    ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
    
    # 前天
    ax3.plot(dates, features['temp_2'])
    ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
    
    # 我的逗逼朋友
    ax4.plot(dates, features['friend'])
    ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
    
    plt.tight_layout(pad=2)

  • # 独热编码
    features = pd.get_dummies(features)
    features.head(5)
    # 标签
    labels = np.array(features['actual'])
    
    # 在特征中去掉标签
    features= features.drop('actual', axis = 1)
    
    # 名字单独保存一下,以备后患
    feature_list = list(features.columns)
    
    # 转换成合适的格式
    features = np.array(features)
    from sklearn import preprocessing
    input_features = preprocessing.StandardScaler().fit_transform(features)

    Build a network model

  • x = torch.tensor(input_features, dtype = float)
    
    y = torch.tensor(labels, dtype = float)
    
    # 权重参数初始化
    weights = torch.randn((14, 128), dtype = float, requires_grad = True) 
    biases = torch.randn(128, dtype = float, requires_grad = True) 
    weights2 = torch.randn((128, 1), dtype = float, requires_grad = True) 
    biases2 = torch.randn(1, dtype = float, requires_grad = True) 
    
    learning_rate = 0.001 
    losses = []
    
    for i in range(1000):
        # 计算隐层
        hidden = x.mm(weights) + biases
        # 加入激活函数
        hidden = torch.relu(hidden)
        # 预测结果
        predictions = hidden.mm(weights2) + biases2
        # 通计算损失
        loss = torch.mean((predictions - y) ** 2) 
        losses.append(loss.data.numpy())
        
        # 打印损失值
        if i % 100 == 0:
            print('loss:', loss)
        #返向传播计算
        loss.backward()
        
        #更新参数
        weights.data.add_(- learning_rate * weights.grad.data)  
        biases.data.add_(- learning_rate * biases.grad.data)
        weights2.data.add_(- learning_rate * weights2.grad.data)
        biases2.data.add_(- learning_rate * biases2.grad.data)
        
        # 每次迭代都得记得清空
        weights.grad.data.zero_()
        biases.grad.data.zero_()
        weights2.grad.data.zero_()
        biases2.grad.data.zero_()

  • Easier to build network models

    input_size = input_features.shape[1]
    hidden_size = 128
    output_size = 1
    batch_size = 16
    my_nn = torch.nn.Sequential(
        torch.nn.Linear(input_size, hidden_size),
        torch.nn.Sigmoid(),
        torch.nn.Linear(hidden_size, output_size),
    )
    cost = torch.nn.MSELoss(reduction='mean')
    optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
    # 训练网络
    losses = []
    for i in range(1000):
        batch_loss = []
        # MINI-Batch方法来进行训练
        for start in range(0, len(input_features), batch_size):
            end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
            xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
            yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
            prediction = my_nn(xx)
            loss = cost(prediction, yy)
            optimizer.zero_grad()
            loss.backward(retain_graph=True)
            optimizer.step()
            batch_loss.append(loss.data.numpy())
        
        # 打印损失
        if i % 100==0:
            losses.append(np.mean(batch_loss))
            print(i, np.mean(batch_loss))

    Predict training results

    x = torch.tensor(input_features, dtype = torch.float)
    predict = my_nn(x).data.numpy()
    
    # 转换日期格式
    dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
    dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
    
    # 创建一个表格来存日期和其对应的标签数值
    true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})
    
    # 同理,再创建一个来存日期和其对应的模型预测值
    months = features[:, feature_list.index('month')]
    days = features[:, feature_list.index('day')]
    years = features[:, feature_list.index('year')]
    
    test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
    
    test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
    
    predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) 
    
    
    # 真实值
    plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
    
    # 预测值
    plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
    plt.xticks(rotation = '60'); 
    plt.legend()
    
    # 图名
    plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

  • https://gitee.com/code-wenjiahao/neural-network-practical-classification-and-regression-tasks

Guess you like

Origin blog.csdn.net/qq_65838372/article/details/132724524