Using Cramer's Rule for Four-Point Fixtures

insert image description here

This article was originally created by CSDN Dianyunxia, ​​please respect your crawler website.

1. Algorithm process

  Four points that are not coplanar in the known space, let their coordinates be A ( x 1 , y 1 , z 1 ) A(x_1,y_1,z_1)A(x1,y1,z1) B ( x 2 , y 2 , z 2 ) B(x_2,y_2,z_2) B(x2,y2,z2) C ( x 3 , y 3 , z 3 ) 、 D ( x 4 , y 4 , z 4 ) C(x_3,y_3,z_3)、D(x_4,y_4,z_4) C(x3,y3,z3)D(x4,y4,z4) , let the radius berrr , sphere centerOOO is( x , y , z ) (x,y,z)(x,y,z ) . Using the property that the distances from the four points to the center of the sphere are equal, the following four equations are obtained.
( x − x 1 ) 2 + ( y − y 1 ) 2 + ( z − z 1 ) 2 = r 2 ; ( x − x 2 ) 2 + ( y − y 2 ) 2 + ( z − z 2 ) 2 = r 2 ; ( x − x 3 ) 2 + ( y − y 3 ) 2 + ( z − z 3 ) 2 = r 2 ; ( x − x 4 ) 2 + ( y − y 4 ) 2 + ( z − z 4 ) 2 = r 2 ; (x-x_1)^2 + (y-y_1)^2 +(z-z_1)^2 =r^2;\\ (x-x_2)^2 + (y-y_2)^2 +(z-z_ 2)^2 =r^2;\\ (x-x_3)^2 + (y-y_3)^2 +(z-z_3)^2 =r^2;\\ (x-x_4)^2 + (y-y_4)^2 +(z-z_4)^2 =r^2;(xx1)2+(yy1)2+(zz1)2=r2;(xx2)2+(yy2)2+(zz2)2=r2;(xx3)2+(yy3)2+(zz3)2=r2;(xx4)2+(yy4)2+(zz4)2=r2;

展开得:
x 2 + y 2 + z 2 − 2 ( x 1 x + y 1 y + z 1 z ) + x 1 2 + y 1 2 + z 1 2 = r 2 ① x 2 + y 2 + z 2 − 2 ( x 2 x + y 2 y + z 2 z ) + x 2 2 + y 2 2 + z 2 2 = r 2 ② x 2 + y 2 + z 2 − 2 ( x 3 x + y 3 y + z 3 z ) + x 3 2 + y 3 2 + z 3 2 = r 2 ③ x 2 + y 2 + z 2 − 2 ( x 4 x + y 4 y + z 4 z ) + x 4 2 + y 4 2 + z 4 2 = r 2 ④ x^2 + y^2 + z^2- 2(x_1x+y_1y+z_1z)+x_1^2+y_1^2 + z_1^2 = r^2 ①\\ x^2 + y^2 + z^2- 2(x_2x+y_2y+z_2z)+x_2^2+y_2^2 + z_2^2 = r^2②\\ x^2 + y^2 + z^2- 2(x_3x+y_3y+z_3z)+x_3^2+y_3^2 + z_3^2 = r^2③\\ x^2 + y^2 + z^2- 2(x_4x+y_4y+z_4z)+x_4^2+y_4^2 + z_4^2 = r^2④ x2+y2+z22(x1x+y1y+z1z)+x12+y12+z12=r2x2+y2+z22(x2x+y2y+z2z)+x22+y22+z22=r2x2+y2+z22(x3x+y3y+z3z)+x32+y32+z32=r2x2+y2+z22(x4x+y4y+z4z)+x42+y42+z42=r2

分别作①-②、③ - ④、② - ③得:
( x 1 − x 2 ) x + ( y 1 − y 2 ) y + ( z 1 − z 2 ) z = 1 / 2 ( x 1 2 − x 2 2 + y 1 2 − y 2 2 + z 1 2 − z 2 2 ) ( x 3 − x 4 ) x + ( y 3 − y 4 ) y + ( z 3 − z 4 ) z = 1 / 2 ( x 3 2 − x 4 2 + y 3 2 − y 4 2 + z 3 2 − z 4 2 ) ( x 2 − x 3 ) x + ( y 2 − y 3 ) y + ( z 2 − z 3 ) z = 1 / 2 ( x 2 2 − x 3 2 + y 2 2 − y 3 2 + z 2 2 − z 3 2 ) (x_1-x_2)x+(y_1-y_2)y+(z_1-z_2)z=1/2(x_1^2 -x_2^2 + y_1^2 -y_2^2 + z_1^2 -z_2^2 )\\ (x_3-x_4)x+(y_3-y_4)y+(z_3-z_4)z=1/2(x_3^2 -x_4^2 + y_3^2 -y_4^2 + z_3^2 -z_4^2 )\\ (x_2-x_3)x+(y_2-y_3)y+(z_2-z_3)z=1/2(x_2^2 -x_3^2 + y_2^2 -y_3^2 + z_2^2 -z_3^2 )\\ (x1x2)x+(y1y2)y+(z1z2)z=1/2(x12x22+y12y22+z12z22)(x3x4)x+(y3y4)y+(z3z4)z=1/2(x32x42+y32y42+z32z42)(x2x3)x+(y2y3)y+(z2z3)z=1/2(x22x32+y22y32+z22z32)

Its corresponding coefficient determinant can be set as:

D = ∣ a b c a 1 b 1 c 1 a 2 b 2 c 2 ∣ D=\left| \begin{matrix} a & b & c\\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{matrix} \right| D= aa1a2bb1b2cc1c2

则: a = ( x 1 − x 2 ) , b = ( y 1 − y 2 ) , c = ( z 1 − z 2 ) , a 1 = ( x 3 − x 4 ) , b 1 = ( y 3 − y 4 ) , c 1 = ( z 3 − z 4 ) , a 2 = ( x 2 − x 3 ) , b 2 = ( y 2 − y 3 ) , c 2 = ( z 2 − z 3 ) a=(x_1-x_2),b=(y_1-y_2),c=(z_1-z_2),\\a_1=(x_3-x_4),b_1=(y_3-y_4),c_1=(z_3-z_4),\\ a_2=(x_2-x_3),b_2=(y_2-y_3),c_2=(z_2-z_3) a=(x1x2),b=(y1y2),c=(z1z2),a1=(x3x4),b1=(y3y4)c1=(z3z4),a2=(x2x3),b2=(y2y3)c2=(z2z3)

The constant term determinant is:

L = ∣ P Q R ∣ L=\left| \begin{matrix} P\\ Q \\ R \end{matrix} \right| L= PQR

则:
P = 1 2 ( x 1 2 − x 2 2 + y 1 2 − y 2 2 + z 1 2 − z 2 2 ) P=\frac{1}{2}(x_1^2 -x_2^2 + y_1^2 -y_2^2 + z_1^2 - z_2^2 )P=21(x12x22+y12y22+z12z22)
Q = 1 2 ( x 3 2 − x 4 2 + y 3 2 − y 4 2 + z 3 2 − z 4 2 ) Q=\frac{1}{2}(x_3^2 -x_4^2 + y_3^2 -y_4^2 + z_3^2 - z_4^2 ) Q=21(x32x42+y32y42+z32z42)
R = 1 2 ( x 2 2 − x 3 2 + y 2 2 − y 3 2 + z 2 2 − z 3 2 ) R=\frac{1}{2}(x_2^2 -x_3^2 + y_2^2 -y_3^2 + z_2^2 - z_3^2 ) R=21(x22x32+y22y32+z22z32)

现设:
D x = ∣ P b c Q b 1 c 1 R b 2 c 2 ∣ Dx=\left| \begin{matrix} P & b & c\\ Q & b_1 & c_1 \\ R & b_2 & c_2 \end{matrix} \right| Dx= PQRbb1b2cc1c2

D y = ∣ a P c a 1 Q c 1 a 2 R c 2 ∣ Dy=\left| \begin{matrix} a & P & c\\ a_1 & Q & c_1 \\ a_2 &R & c_2 \end{matrix} \right| Dy= aa1a2PQRcc1c2

D z = ∣ a b P a 1 b 1 Q a 2 b 2 R ∣ Dz=\left| \begin{matrix} a & b & P\\ a_1 & b_1 & Q \\ a_2 &b_2 & R \end{matrix} \right| Dz= aa1a2bb1b2PQR

From Cramer's rule in linear algebra:
x = D x D x=\frac{Dx}{D}x=DDx

y = D y D y=\frac{Dy}{D} y=DDy

z = D z D z=\frac{Dz}{D} z=DDz

2. C++ code

bool calculatesphere_oAndsphere_r(Eigen::Vector3d& p1, Eigen::Vector3d& p2,
	Eigen::Vector3d& p3, Eigen::Vector3d& p4,
	Eigen::Vector3d& sphere_o, double& sphere_r)
{
    
    
	double a = p1[0] - p2[0], b = p1[1] - p2[1], c = p1[2] - p2[2];
	double a1 = p3[0] - p4[0], b1 = p3[1] - p4[1], c1 = p3[2] - p4[2];
	double a2 = p2[0] - p3[0], b2 = p2[1] - p3[1], c2 = p2[2] - p3[2];
	double A = p1[0] * p1[0] - p2[0] * p2[0];
	double B = p1[1] * p1[1] - p2[1] * p2[1];
	double C = p1[2] * p1[2] - p2[2] * p2[2];
	double A1 = p3[0] * p3[0] - p4[0] * p4[0];
	double B1 = p3[1] * p3[1] - p4[1] * p4[1];
	double C1 = p3[2] * p3[2] - p4[2] * p4[2];
	double A2 = p2[0] * p2[0] - p3[0] * p3[0];
	double B2 = p2[1] * p2[1] - p3[1] * p3[1];
	double C2 = p2[2] * p2[2] - p3[2] * p3[2];
	double P = (A + B + C) / 2;
	double Q = (A1 + B1 + C1) / 2;
	double R = (A2 + B2 + C2) / 2;

	// D是系数行列式,利用克拉默法则
	double D = a * b1 * c2 + a2 * b * c1 + c * a1 * b2 - (a2 * b1 * c + a1 * b * c2 + a * b2 * c1);

	double Dx = P * b1 * c2 + b * c1 * R + c * Q * b2 - (c * b1 * R + P * c1 * b2 + Q * b * c2);
	double Dy = a * Q * c2 + P * c1 * a2 + c * a1 * R - (c * Q * a2 + a * c1 * R + c2 * P * a1);
	double Dz = a * b1 * R + b * Q * a2 + P * a1 * b2 - (a2 * b1 * P + a * Q * b2 + R * b * a1);

	if (D == 0)
	{
    
    
		cerr << "四点共面" << endl;
		return false;
	}
	else
	{
    
    
		sphere_o[0] = Dx / D;
		sphere_o[1] = Dy / D;
		sphere_o[2] = Dz / D;
		sphere_r = sqrt((p1[0] - sphere_o[0]) * (p1[0] - sphere_o[0]) +
			(p1[1] - sphere_o[1]) * (p1[1] - sphere_o[1]) +
			(p1[2] - sphere_o[2]) * (p1[2] - sphere_o[2]));
		return true;
	}
}

3.python code

def four_point_fix_sphere(points):
    # 四个点的坐标
    P1 = points[0]
    P2 = points[1]
    P3 = points[2]
    P4 = points[3]
    # 互相相减
    l = P1 - P2
    l1 = P3 - P4
    l2 = P2 - P3
    # 系数D
    D = np.ones((3, 3))
    D[0, :] = l
    D[1, :] = l1
    D[2, :] = l2
    detD = np.linalg.det(D)
    # P,Q,R
    P = (np.linalg.norm(P1) ** 2 - np.linalg.norm(P2) ** 2) * 0.5
    Q = (np.linalg.norm(P3) ** 2 - np.linalg.norm(P4) ** 2) * 0.5
    R = (np.linalg.norm(P2) ** 2 - np.linalg.norm(P3) ** 2) * 0.5
    # 常数项系数
    L = np.ones((3, 1))
    L[0] = P
    L[1] = Q
    L[2] = R
    # 系数Dx
    Dx = np.ones((3, 3))
    Dx[:, :] = D[:, :]
    Dx[:, 0] = L[:, 0]
    detDx = np.linalg.det(Dx)
   
    # 系数Dy
    Dy = np.ones((3, 3))
    Dy[:, :] = D[:, :]
    Dy[:, 1] = L[:, 0]
    detDy = np.linalg.det(Dy)
    # 系数Dz
    Dz = np.ones((3, 3))
    Dz[:, :] = D[:, :]
    Dz[:, 2] = L[:, 0]
    detDz = np.linalg.det(Dz)
    # 计算球心
    xo = detDx / detD
    yo = detDy / detD
    zo = detDz / detD
    sphere_o = [xo, yo, zo]
    # 计算半径
    sphere_r = np.linalg.norm(P1 - sphere_o)

    return sphere_o, sphere_r

4. Calculation results

球心坐标:[-5.480253504546088, -0.08827109437986415, -0.01369803960562648]
球体半径:1.9874710684528454

insert image description here

Guess you like

Origin blog.csdn.net/qq_36686437/article/details/131796133