Fine-tuning implementation based on ChatGLM

Fine-tuning implementation based on ChatGLM

The blogger implemented the fine-tuning code based on ChatGLM-6B and ChatGLM2-6B by himself, and the warehouse is visible:
https://github.com/wjn1996/ChatGLM2-Tuning

The specific implementation process is described below.

1. Get the code:

Get the official code directly from ChatGLM-6B

git clone https://github.com/THUDM/ChatGLM-6B.git

2. Installation environment

Container environment:

protobuf
transformers==4.29.2
cpm_kernels
torch==2.0.0+cu117
gradio
mdtex2html
sentencepiece
accelerate
sse-starlette
streamlit>=1.24.0
rouge_chinese 
nltk 
jieba 
datasets
peft

cuda environment:
image.png

3. Prepare the data set.

Example of instruction fine-tuning/dialogue dataset format:

{
    
    
  "input": "腹壁下动脉穿支的影像学检查有些什么?", 
  "output": "磁共振血管成像;四维CT血管显影;四维CT;多普勒血流探测仪;腹壁下动脉造影"
}

4. Get the model

It is recommended to manually download the model to a local or server disk beforehand.
Model download address: https://huggingface.co/THUDM/chatglm-6b/tree/main
Note: Download all files as much as possible.

5. Modify the code

(1) Configure the cache cache
The original code cache is stored in the /root directory by default, which is easy to cause overflow on the /root disk, so the relevant configuration needs to be modified.
Add the "base_cache_dir" parameter to the data_args class in the ptuning/arguments.py file, and run it Specify the value of the "--base_cache_dir" parameter in the script, that is, specify the cache directory as the storage disk or mount disk.

You can also directly use –cache_dir provided by huggingface

Add the "task_name" parameter to the data_args class in the ptuning/arguments.py file, indicating the task name of the current experimental data set, which is convenient for distinguishing different cache files.

In the main() function in the main.py file, add the code:

base_cache_dir = os.path.join(data_args.base_cache_dir, data_args.task_name)
if training_args.local_rank <= 0 and not os.path.exists(base_cache_dir):
    os.makedirs(base_cache_dir)

And add parameters in train_dataset.map(), eval_dataset.map(), predict_dataset.map():

cache_file_name=os.path.join(base_cache_dir, "train.arrow")
cache_file_name=os.path.join(base_cache_dir, "eval.arrow")
cache_file_name=os.path.join(base_cache_dir, "predict.arrow")

If you want to reuse, delete the parameter "--overwrite_cache" in the running script
(2) Modify the running script to adapt to your own experiment
Here to show the effectiveness of the official ptuning parameter training
and change it to your actual address.
You can edit train.sh to run common experiments

TASK_NAME=<Your task name>
PRE_SEQ_LEN=128
LR=2e-2

CHAT_TRAIN_DATA=<Your path>/train.json
CHAT_VAL_DATA=<Your path>/dev.json

MODEL_NAME_OR_PATH=<Your model path>/chatglm-6b

NUM_GPUS=8
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS ptuning/main.py \
--do_train \
--train_file $CHAT_TRAIN_DATA \
--validation_file $CHAT_VAL_DATA \
--prompt_column input \
--response_column output \
--model_name_or_path $MODEL_NAME_OR_PATH \
--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \
--overwrite_output_dir \
--max_source_length 256 \
--max_target_length 256 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 1 \
--predict_with_generate \
--max_steps 9000 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--pre_seq_len $PRE_SEQ_LEN \
--task_name $TASK_NAME \
--base_cache_dir <Your cache path >
# --quantization_bit 4

You can also edit ds_train_finetune.sh to implement deepspeed for distributed training:

TASK_NAME=<Your task name>
PRE_SEQ_LEN=128
LR=1e-4

CHAT_TRAIN_DATA=<Your data path>/train.json
CHAT_VAL_DATA=<Your data path>/dev.json

MODEL_NAME_OR_PATH=<Your model path>/chatglm-6b

NUM_GPUS=8

MASTER_PORT=$(shuf -n 1 -i 10000-65535)

export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
deepspeed --num_gpus=$NUM_GPUS --master_port $MASTER_PORT ptuning/main.py \
--deepspeed <Your deepspeed file path>/deepspeed.json \
--do_train \
--train_file $CHAT_TRAIN_DATA \
--test_file $CHAT_VAL_DATA \
--prompt_column input \
--response_column output \
--model_name_or_path $MODEL_NAME_OR_PATH \
--output_dir ./output/deepspeed/adgen-chatglm-6b-ft-$LR \
--overwrite_output_dir \
--max_source_length 256 \
--max_target_length 256 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 1 \
--predict_with_generate \
--max_steps 9000 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--task_name $TASK_NAME \
--base_cache_dir <Your cache path> \
--fp16
# --overwrite_cache \

The blogger implemented the code of other parameter validity learning based on the peft library by himself. The content of the code is as follows:

#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
import json

import numpy as np
from datasets import load_dataset
import jieba 
from rouge_chinese import Rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import torch

import transformers
from transformers import (
    AutoConfig,
    AutoModel,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    set_seed,
)

# 添加PEFT配置
from peft import (
    LoraConfig, 
    PrefixTuningConfig,
    PromptEncoderConfig,
    PromptEncoderReparameterizationType,
    PromptTuningConfig,
    PromptTuningInit,
    TaskType,
    get_peft_model,
)

from trainer_seq2seq import Seq2SeqTrainer

from arguments import ModelArguments, DataTrainingArguments, PeftArguments

logger = logging.getLogger(__name__)

def main():

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, PeftArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, peft_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, peft_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    # datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {
      
      training_args.local_rank}, device: {
      
      training_args.device}, n_gpu: {
      
      training_args.n_gpu}"
        + f"distributed training: {
      
      bool(training_args.local_rank != -1)}, 16-bits training: {
      
      training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {
      
      training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Load dataset
    data_files = {
    
    }
    if data_args.train_file is not None:
        data_files["train"] = data_args.train_file
        extension = data_args.train_file.split(".")[-1]
    if data_args.validation_file is not None:
        data_files["validation"] = data_args.validation_file
        extension = data_args.validation_file.split(".")[-1]
    if data_args.test_file is not None:
        data_files["test"] = data_args.test_file
        extension = data_args.test_file.split(".")[-1]

    raw_datasets = load_dataset(
        extension,
        data_files=data_files,
        cache_dir=model_args.cache_dir,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Load pretrained model and tokenizer
    config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
    config.pre_seq_len = model_args.pre_seq_len
    config.prefix_projection = model_args.prefix_projection

    tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)

    # if model_args.ptuning_checkpoint is not None:
    #     # Evaluation
    #     # Loading extra state dict of prefix encoder
    #     model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
    #     prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
    #     new_prefix_state_dict = {}
    #     for k, v in prefix_state_dict.items():
    #         if k.startswith("transformer.prefix_encoder."):
    #             new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
    #     model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
    # else:
    model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)

    # 使用PEFT
    if peft_args.peft_type is not None:
        if peft_args.peft_type == "lora":
            peft_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                r=peft_args.lora_dim,
                lora_alpha=32,
                lora_dropout=0.1
            )
        elif peft_args.peft_type == "ptuning":
            peft_config = PromptEncoderConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                encoder_reparameterization_type=PromptEncoderReparameterizationType.MLP, # 默认使用MLP表征Prompt
                encoder_num_layers=2,
                encoder_dropout=0.1,
                num_virtual_tokens=8 # soft prompt token数量
            )
        elif peft_args.peft_type == "prefix":
            peft_config = PrefixTuningConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                num_virtual_tokens=4,
                num_attention_heads=12, 
                num_layers=48,
                encoder_hidden_size=768,
                token_dim=1536,
            )
        elif peft_args.peft_type == "prompt":
            peft_config = PromptTuningConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                prompt_tuning_init=PromptTuningInit.TEXT if peft_args.prompt_tuning_initial_text is not None else PromptTuningInit.RANDOM
            )
        elif peft_args.peft_type == "adalora":
            raise NotImplementedError("Adalora is under developing")
        else:
            raise NotImplementedError("you must choose one of parameter-efficient learning method")
    
        logger.info("You have chosen {} as peft type, here is loading model ...".format(peft_args.peft_type))
        model = get_peft_model(model, peft_config=peft_config)
        logger.info("Reduing trainable parameters: {}".format(model.print_trainable_parameters))

    
    # if model_args.quantization_bit is not None:
    #     print(f"Quantized to {model_args.quantization_bit} bit")
    #     model = model.quantize(model_args.quantization_bit)
    # if model_args.pre_seq_len is not None:
    #     # P-tuning v2
    #     model = model.half()
    #     model.transformer.prefix_encoder.float()
    # else:
    #     # Finetune
    #     model = model.float()
    model = model.float()

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    prompt_column = data_args.prompt_column
    response_column = data_args.response_column
    history_column = data_args.history_column
    
    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    def preprocess_function_eval(examples):
        inputs, targets = [], []
        for i in range(len(examples[prompt_column])):
            if examples[prompt_column][i] and examples[response_column][i]:
                query = examples[prompt_column][i]
                if history_column is None or len(examples[history_column][i]) == 0:
                    prompt = query
                else:
                    prompt = ""
                    history = examples[history_column][i]
                    for turn_idx, (old_query, response) in enumerate(history):
                        prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
                    prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
                inputs.append(prompt)
                targets.append(examples[response_column][i])

        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True)
        labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True)

        if data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]
        model_inputs["labels"] = labels["input_ids"]

        return model_inputs

    def preprocess_function_train(examples):
        max_seq_length = data_args.max_source_length + data_args.max_target_length

        model_inputs = {
    
    
            "input_ids": [],
            "labels": [],
        }
        for i in range(len(examples[prompt_column])):
            if examples[prompt_column][i] and examples[response_column][i]:
                query, answer = examples[prompt_column][i], examples[response_column][i]

                if history_column is None:
                    prompt = query
                else:
                    prompt = ""
                    history = examples[history_column][i]
                    for turn_idx, (old_query, response) in enumerate(history):
                        prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
                    prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)

                prompt = prefix + prompt
                a_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
                b_ids = tokenizer.encode(text=answer, add_special_tokens=False)

                if len(a_ids) > data_args.max_source_length - 1:
                    a_ids = a_ids[: data_args.max_source_length - 1]

                if len(b_ids) > data_args.max_target_length - 2:
                    b_ids = b_ids[: data_args.max_target_length - 2]

                input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids)

                context_length = input_ids.index(tokenizer.bos_token_id)
                mask_position = context_length - 1
                labels = [-100] * context_length + input_ids[mask_position+1:]
                
                pad_len = max_seq_length - len(input_ids)
                input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
                labels = labels + [tokenizer.pad_token_id] * pad_len
                if data_args.ignore_pad_token_for_loss:
                    labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]

                model_inputs["input_ids"].append(input_ids)
                model_inputs["labels"].append(labels)

        return model_inputs
    
    def print_dataset_example(example):
        print("input_ids",example["input_ids"])
        print("inputs", tokenizer.decode(example["input_ids"]))
        print("label_ids", example["labels"])
        print("labels", tokenizer.decode(example["labels"]))
    
    base_cache_dir = os.path(data_args.base_cache_dir, data_args.task_name)
    if training_args.local_rank <= 0 and not os.path.exists(base_cache_dir):
        os.makedirs(base_cache_dir)

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function_train,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
                cache_file_name=os.path.join(base_cache_dir, "train.arrow")
            )
        print_dataset_example(train_dataset[0])

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function_eval,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
                cache_file_name=os.path.join(base_cache_dir, "eval.arrow")
            )
        print_dataset_example(eval_dataset[0])

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function_eval,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
                cache_file_name=os.path.join(base_cache_dir, "predict.arrow")
            )
        print_dataset_example(predict_dataset[0])

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=None,
        padding=False
    )

    # Metric
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        score_dict = {
    
    
            "rouge-1": [],
            "rouge-2": [],
            "rouge-l": [],
            "bleu-4": []
        }
        for pred, label in zip(decoded_preds, decoded_labels):
            hypothesis = list(jieba.cut(pred))
            reference = list(jieba.cut(label))
            rouge = Rouge()
            scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
            result = scores[0]
            
            for k, v in result.items():
                score_dict[k].append(round(v["f"] * 100, 4))
            bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
            score_dict["bleu-4"].append(round(bleu_score * 100, 4))

        for k, v in score_dict.items():
            score_dict[k] = float(np.mean(v))
        return score_dict

    # Override the decoding parameters of Seq2SeqTrainer
    training_args.generation_max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    training_args.generation_num_beams = (
        data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    )
    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
        save_prefixencoder=model_args.pre_seq_len is not None
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        # elif last_checkpoint is not None:
        #     checkpoint = last_checkpoint
        model.gradient_checkpointing_enable()
        model.enable_input_require_grads()
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        # trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {
    
    }
    max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=max_seq_length, temperature=0.95)
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")
        predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95)
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
                predictions = [pred.strip() for pred in predictions]
                labels = tokenizer.batch_decode(
                    predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
                labels = [label.strip() for label in labels]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w", encoding="utf-8") as writer:
                    for p, l in zip(predictions, labels):
                        res = json.dumps({
    
    "labels": l, "predict": p}, ensure_ascii=False)
                        writer.write(f"{
      
      res}\n")
    return results


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()

For details, see: https://github.com/wjn1996/ChatGLM2-Tuning
merged ChatGLM-6B and ChatGLM2-6B (versions V1 and V2).

Report an error and step on the pit

(1) If <image_-100> is encountered after tokenization,
modify tokenization_chatglm.py, the last line:

def _decode(
            self,
            token_ids: Union[int, List[int]],
            **kwargs
    ) -> str:
        if isinstance(token_ids, int):
            token_ids = [token_ids]
        if len(token_ids) == 0:
            return ""
        if self.pad_token_id in token_ids:  # remove pad
            token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
        return self.sp_tokenizer.decode(token_ids) # after edited

(2) When there is an error of None is not in list,
update the latest version of "ice_text.model" ( https://huggingface.co/THUDM/chatglm-6b/resolve/main/ice_text.model )
Reference: https://github. com/THUDM/ChatGLM-6B/issues/432
(3) vocab assert question
don't forget to download "ice_text.model" ( https://huggingface.co/THUDM/chatglm-6b/resolve/main/ice_text.model )
(4) Prefix-encoder not found
Such problems will occur when using the ChatGLM2-6B code to load the ChatGLM-6B model (the V2 code loads the V1 model), and there is an adaptation problem between the two codes.
If this problem occurs when the V1 code loads the V1 model, you can download the latest model library to solve it: https://huggingface.co/THUDM/chatglm-6b/tree/main

Guess you like

Origin blog.csdn.net/qq_36426650/article/details/131743530